我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

贵州西部光皮桦天然次生林碳素积累及分配特征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年04期
Page:
51-56
Column:
研究论文
publishdate:
2014-07-01

Article Info:/Info

Title:
Carbon sequestration and distribution characteristics in natural secondary forests of Betula luminifera in west Guizhou
Article ID:
1000-2006(2014)04-0051-06
Author(s):
GAO Yanping1 DING Fangjun2 PAN Mingliang3 ZHOU Fengjiao2 WU Peng2
1. Public Benefit Forest Administration of Guizhou Province, Guiyang 550001, China;
2. Guizhou Provincial Forestry Academy, Guiyang 550005, China;
3. Forestry Faculty of Guizhou University, Guiyang 550025, China
Keywords:
carbon content carbon density Betula luminifera natural secondary forests west Guizhou
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.2014.04.010
Document Code:
A
Abstract:
The natural secondary forests of Betula luminifera in west Guizhou were taken as the subject to study the carbon content, carbon density and the distribution characteristics of carbon based on an integrated approach of field investigation and lab analysis. The results indicated that the carbon content in the ecosystem of the Betula luminifera forests in descending order was trees(495.27 g/kg), shrubs(487.10 g/kg), herbs(456.57 g/kg), litter(431.57 g/kg)and 0-80 cm deep soil(36.31 g/kg)with significant difference between them. The average carbon content in the vegetation was 483.55 g/kg. The carbon content in the different organs of the trees in descending order was trunk, branches, foliage and roots, and the carbon content for both the trunk and the branches increased with the increase in the diameter at breast height(DBH). The carbon content above ground was higher than that underground both in the shrubs and herbs. The carbon content in the soil decreased with the increase of the soil depth. The carbon density of the ecosystem in average was 224.67 t/hm2 and in descending order was the 0-80 cm deep soil(201.3 t/hm2), the trees(17.22 t/hm2), shrubs(3.14 t/hm2), litter(2.49 t/hm2)and herbs(0.82 t/hm2), and these respectively contributed 89.60%, 7.53%, 1.40%, 1.11% and 0.36% of the entire ecosystem. The carbon density in the vegetation was 21.18 t/hm2, accounting for only 9.29% of the ecosystem. The carbon density in the surface layer(0-20 cm deep)of the soil was 76.7 t/hm2, contributing 38.08% of the total soil mass(0-80 cm deep), significantly higher than that in any other soil layer, which indicated that carbon was significantly concentrating on the surface layer of the soil. The net carbon sequestration in the natural secondary forests of B. luminifera was 3.58 t/(hm2·a), which was equal to 13.12 t/(hm2·a)CO2, and it proved that the natural secondary forests of B. luminifera was an important sink of atmospheric carbon, and it was quite meaningful to maintain and well manage the present natural secondary forests of B. luminifera.

References

[1] Pope J. How can global warming be traced to CO2 [J]. Scientific American, 2006, 295(6): 124.
[2] Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248(4960): 1217-1219.
[3] Brown S. Present and potential roles of forests in the global climate change debate[J]. Unasylva, 1996, 47(185):3-10.
[4] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156-159.
[5] Houghton R A. Balancing the global carbon budget[J]. Annual Review of Earth Planetary Sciences, 2007, 35: 313-347.
[6] 康冰,刘世荣,张广军,等. 广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征[J]. 生态学报, 2006, 26(5): 1320-1329.Kang B, Liu S R, Zhang G J, et al. Carbon accumulation and distribution in Pinus massoniana and Cunninghamia lanceolata mixed forest ecosystem in Daqingshan, Guangxi of China[J]. Acta Ecologica Sinica, 2006, 26(5): 1320-1329.
[7] 康冰,刘世荣,蔡道雄,等. 南亚热带杉木生态系统生物量和碳素积累及其空间分布特征[J]. 林业科学, 2009, 45(8):147-153.Kang B, Liu S R, Cai D X, et al. Characteristics of biomass, carbon accumulation and its spatial distribution in Cunninghamia lanceolata forest ecosystem in low subtropical area[J]. Scientia Silvae Sinicae, 2009, 45(8):147-153.
[8] 尉海东, 马祥庆. 不同发育阶段马尾松人工林生态系统碳贮量研究[J]. 西北农林科技大学学报: 自然科学版, 2007, 35(1): 171-174. Wei H D, Ma X Q. Study on the carbon storage and distribution of Pinus massoniana Lamb. plantation ecosystem at different growing stages[J]. Journal of Northwest A & F University:Nat Sci Ed, 2007, 35(1): 171-174.
[9] 莫江明,方运霆,彭少麟,等. 鼎湖山南亚热带常绿阔叶林碳素积累和分配特征[J]. 生态学报, 2003, 23(10): 1970-1976.Mo J M, Fang Y T, Peng S L, et al. Carbon accumulation and allocation of lower subtropical evergreen broad-leaved forests in a MAB reserve of China[J]. Acta Ecologica Sinica, 2003, 23(10): 1970-1976.
[10] 何友均,覃 林,李智勇,等. 西南桦纯林与西南桦×红椎混交林碳贮量比较[J]. 生态学报,2012,32(23):7586-7594.He Y J, Qin L, Li Z Y, et al. Carbon storage capacity of a Betula alnoides stand and a mixed Betula alnoides×Castanopsis hystrix stand in southern subtropical China: a comparison study[J]. Acta Ecologica Sinica, 2012,32(23):7586-7594.
[11] Yang Y H, Mohammat A, Feng J M, et al. Storage, patterns and environmental controls of soil organic carbon in China[J]. Biogeochemistry, 2007, 84(2): 131-141.
[12] 刘艳,苏印泉,张玲玲,等. 黄土高原刺槐人工幼林碳密度动态变化[J]. 南京林业大学学报:自然科学版, 2013, 37(2): 28-32.Liu Y, Su Y Q, Zhang L L, et al. Study on dynamic change of organic carbon in young Robinia pseudoacacia plantation in Loess Plateau[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2013, 37(2): 28-32.
[13] 吴小山,黄从德. 退耕还林地桦木林生态系统碳素密度、贮量与空间分布[J]. 生态学杂志, 2007, 26(3):323-326.Wu X S, Huang C D. Carbon density, storage and distribution in birch forest ecosystem on the forestland converted from farmland[J]. Chinese Journal of Ecology, 2007, 26(3):323-326.
[14] 周玉荣,于振良,赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518-522.Zhou Y R, YU Z L, Zhao S D. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 2000, 24(5): 518-522.
[15] 邸月宝,王辉民,马泽清,等. 亚热带森林生态系统不同重建方式下碳储量及其分配格局[J]. 科学通报, 2012, 57(17):1553-1561.Di Y B, Wang H M, Ma Z Q, et al. Carbon storage and its allocation pattern of forest ecosystems with different restoration methods in subtropical China[J]. Chin Sci Bull, 2012, 57(17):1553-1561.
[16] 桑卫国,马克平,陈灵芝. 暖温带落叶阔叶林碳循环的初步估算[J]. 植物生态学报, 2002, 26(5):543-548.Sang W G, Ma K P, Chen L Z. Primary study on carbon cycling in warm temperate deciduous broad-leaved forest[J]. Acta Phytoecologica Sinica, 2002, 26(5):543-548.
[17] Turner J, Lambert M. Change in organic carbon in forest plantation soils in eastern Australia[J]. Forest Ecology Management, 2000, 133(3): 231-247.
[18] Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology Management, 2002, 168(1-3): 241-257.
[19] Huang M, Ji J, Li K, et al. The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of south China[J]. Tellus B, 2007, 59(3): 439-448.
[20] 李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J]. 生态学报,1998,18(4):371-378.Li Y D, Wu Z M, Zeng Q B, et al. Carbon pool and carbon dioxide dynamics of tropical mountain rain forest ecosystem at Jianfengling, Hainan Island[J]. Acta Ecologica Sinica, 1998,18(4):371-378.
[21] 方晰,田大伦,项文化,等. 速生阶段杉木人工林碳素密度、贮量和分布[J]. 林业科学, 2002,38(3):14-19.Fang X, Tian D L, Xiang W H, et al. Density, storage and distribution of carbon in Chinese fir plantation at fast growing stage[J]. Scientia Silvae Sinicae, 2002,38(3):14-19.

Last Update: 2014-07-31