我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

樱属植物核型参数及种间亲缘关系分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年增刊
Page:
25-29
Column:
研究论文
publishdate:
2014-10-29

Article Info:/Info

Title:
Karyotype parameters analysis and genetic relationship discussion of Cerasus(Rosaceae)
Article ID:
1000-2006(2014)S1-0025-05
Author(s):
GU Yu12 SHI Gangying1 LI Zhen1 WANG Xianrong1
1. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
2. China National GeneBank, Beijing Genomics Institution, Shenzhen 518083, China
Keywords:
Cerasus karyotype parameters cluster analysis genetic relationship
Classification number :
Q948
DOI:
10.3969/j.issn.1000-2006.2014.S1.006
Document Code:
A
Abstract:
Cluster analysis of eighteen materials of Cerasus was made by using DPS software with a maximum distance algorithm to explore systematic structure among genera and the relationship among species based on karyotype parameters. The result indicated that: basic chromosome number of this genus was proved to be x=8, chromosome number was proved to be 2n=16, 2n=24 and 2n=32; there were four chromosome types: M, m, sm and st; satellites were common, karyotypes were confirmed to be 2A, 2B, 1B; taxa of wild species were confirmed diploid, and polyploidy phenomenon was remarkable in cultivars; C. subhirtella, C. subhirtella ‘Autumnalis’, C. yedoensis and C. serrulata stayed together, supporting the morphological C. sect. Sargentella; Diploid C. vulgaris and C. avium stayed together, supporting C. sect. Cerasus. Although C. jamasakura was morphologically similar to C. serrulata, their genetic distance was very far and the former was closer to C. campanulta. Polyploidy frequency in cultivated species was significantly higher than in wild species, showing a long genetic distance to their diploid ancestors. However, karyotype analysis and cluster analysis were difficult to explain the origin of cultivated species. Unlike morphological evidence, C. subg. Microcerasus and C. subg. Cerasus had not been apparently separated by cluster analysis.

References

[1] Lu L D, Gu C Z, Li C L, et al. Rosaceae[C]//Wu Z Y, Raven P H, Hong D Y. Flora of China, Vol. 9. Beijing: Science Press; St. Louis: Missouri Botanical Garden, 2003.
[2] 吴征镒, 周浙昆, 李德铢, 等. 世界种子植物科的分布区类型系统[J]. 云南植物研究, 2003, 25(3): 245-257.Wu Z Y, Zhou Z K, Li D Z, et al. The areal-types of the world famelies of seed plants[J]. Acta Botanica Yunnanica, 2003, 25(3): 245-257.
[3] 吴征镒. 《世界种子植物科的分布区类型系统》的修订[J]. 云南植物研究, 2003, 25(5): 535.Wu Z Y. A revision of the areal-types of the world famelies of seed plants[J]. Acta Botanica Yunnanica, 2003, 25(5): 245-257.
[4] Potter D, Gao F, Bortiri P E, et al. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data[J]. Plant Systematics and Evolution, 2002, 231(1-4): 77-89.
[5] 王贤荣. 中国樱花品种图志[M]. 北京: 科学出版社, 2014.
[6] 李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4): 297-302.Li M X, Chen R Y. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4): 297-302.
[7] Levan A, Fredga K, Sandberg A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 1964, 52(2):201-220.
[8] Stebbins G L. Chromosomal Evolution in Higher Plants[M]. London: Edward Arnold Ltd, 1971.
[9] Goldblatt P, Johnson D E. Index to Plant Chromosome Numbers[M]. St. Louis:Missouri Botanical Garden, 1979-2014.
[10] 刘慧民, 陈雅君, 吕贵娥, 等. 17 种绣线菊核型特征及核型参数分析[J]. 园艺学报, 2010, 37(9): 1456-1462.Liu H M, Chen Y J, Lü G E, et al. Karyotype features of 17 species of Spiraea and Karyotype Parameters Analysis[J]. Acta Horticulturae Sinica, 2010, 37(9): 1456-1462.
[11] 张海洋, 苗红梅, 李春, 等. 芝麻染色体核型及似近系数分析[J]. 植物学报, 2012, 47(6): 602-614.Zhang H Y, Miao H M, Li C, et al. Analysis of sesame karyotype and resemblance-near coefficient[J]. Chinese Bulletin of Botany, 2012, 47(6): 602-614.
[12] Oginuma K. Karyomorphological studies on Prunus in Japan[J]. Journal of Science of the Hiroshima University: Series B, Division 2. Botany. 1987, 2(21): 1-66.
[13] Oginuma K. Karyomorphological studies on some species of Japanese Prunus[C]. Proc. Sino-Jpn. Symposium Pl. Chromes. Plant Chromosome Research. 1987, 131-134.
[14] 陈瑞阳. 中国主要经济植物染色体图谱 第一册: 中国果树及其野生近缘植物染色体图谱[M]. 北京: 万国学术出版社, 1993.
[15] Shi S, Li J L, Sun J H, et al. Phylogeny and classification of Prunus sensu lato(Rosaceae). Journal of Integrative Plant Biology, 2013, 55(11): 1069-1079.
[16] Hebert P D N, Cywinska A, Ball S L. et al. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society of London:Series B, Biological Sciences, 2003, 270(1512): 313-321.
[17] lvarez I, Wendel J F. Ribosomal ITS sequences and plant phylogenetic inference[J]. Molecular Phylogenetics and Evolution, 2003, 29(3): 417-434.
[18] Yao H, Song J Y, Liu Chang, et al. Use of ITS2 region as the universal DNA barcode for plants and animals[J]. PLoS ONE, 2010, 5(10): e13102.
[19] Chase M W, Cowan R S, Hollingsworth P M, et al. A proposal for a standardised protocol to barcode all land plants[J]. Taxon, 2007, 56(2): 295-299.
[20] Kress W J, Wurdack K J, Zimmer E A, et al. Use of DNA barcodes to identify flowering plants[J]. Proceedings of the National Academy of Sciences, 2005, 102(23): 8369-8374.
[21] CBOL Plant Working Group. A DNA barcode for land plants[J]. Proceedings of the National Academy of Sciences, 2009, 106(31), 12794-12797.
[22] Chen Z L, Chen W J, Chen H, et al. Prunus pananensis(Rosaceae), a new species from Pan’an of central Zhejiang, China[J]. PloS ONE, 2013, 8(1): e54030.

Last Update: 1900-01-01