我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

贡嘎山木本植物碳同位素沿海拔梯度的变化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年06期
Page:
33-37
Column:
研究论文
publishdate:
2014-12-09

Article Info:/Info

Title:
Variations in carbon isotope of the main woody plants along the elevational gradient on the Gongga Mountain
Article ID:
1000-2006(2014)06-0033-05
Author(s):
XIE Jing12ZHU Wanze1*ZHOU Peng12ZHAO Guang12
1.Institute of Mountain Hazards and Environment,Ministry of Water Resources, CAS,Chengdu 610041,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China
Keywords:
δ13C woody plant elevation life form Gongga Mountain
Classification number :
Q948; S718
DOI:
10.3969/j.issn.1000-2006.2014.06.007
Document Code:
A
Abstract:
The main woody plants were collected from different elevations on the eastern slope of Gongga Mountain to study the variety of stable isotope carbon composition along the elevational gradient. This paper showed the δ13C values of 22 woody plants ranged from -3.236% to -2.521% and with the average of(-2.957±0.163)%. There was a considerable difference in the leaf δ13C values of the woody plants at different elevations. The δ13C values increased along the elevational gradient, and the same situation with the δ13C of Rhododendron faberi, Abies fabri, Tetrcentron sinense and Fargesia spathacea. Significant difference in life form of δ13C values was found, deciduous species was greater than evergreen species. Significant inverse correlation was observed between δ13C values and the temperature from June to September, and a significant positive correlation between δ13C values and the precipitation from June to August. The temperature and precipitation might be the main factors that influence the leaf δ13C values of Gongga Mountain.

References

[1] 蒋高明. 植物生理生态学研究中的稳定碳同位素技术及其应用[J]. 生态学杂志,1996,15(2):49-54. Jiang G M. Application of stable carbon isotope technique in plant physiological ecology research[J]. Chinese Journal of Ecology,1996,15(2):49-54.
[2] 陈世苹,白永飞,韩兴国. 稳定性碳同位素技术在生态学研究中的应用[J]. 植物生态学报,2002,26(5):549-560. Chen S P,Bai Y F,Han X G. Applications of stable carbon isotope techniques to ecological research[J]. Acta Phytoecologica Sinica,2002,26(5):549-560.
[3] 郑淑霞,上官周平. 陆生植物稳定碳同位素组成与全球变化[J]. 应用生态学报,2006,17(4):733-739. Zheng S X,Shangguan Z P. Terrestrial plant stable carbon isotope composition and global change[J]. Chinese Journal of Applied Ecology,2006,17(4):733-739.
[4] 陈宝君,钱君龙,濮培民,等. 树轮α-纤维素δ13C角分布及其气候含义[J]. 南京林业大学学报:自然科学版,2002,26(1):14-18. Chen B J,Qian J L,Pu P M,et al. δ13C circumferential variation in tree-rings α-cellulose and its climatic implications[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2002,26(1):14-18.
[5] Dawson T E,Mambelli S,Plamboeck A H,et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics,2002,33:507-559.
[6] Morecroft M D,Woodward F I. Experiments on the causes of altitudinal differences in the leaf nutrient contents,leaf size and δ13C of Alehemilla alpina [J]. New Phytologist,1996,134:471-479.
[7] Van de Water P K,Leavitt S W,Betancourt J L. Leaf δ13C variability with elevation,slope aspect,and precipitation in the southwest United States[J]. Oecologia,2002,132:332-343.
[8] Shim J H,Pendall E,Morgan J A,et al. Wetting and drying cycles drive variations in the stable carbon isotope ratio of respired carbon dioxide in semi-arid grassland[J]. Oecologia,2009,160:321-333.
[9] Bettarini I,Calderoni G,Miglietta F,et al. Isotopic carbon discrimination and leaf nitrogen content of Erica arborea L. along a CO2 concentration gradient in a CO2 spring in Italy[J]. Tree Physiology,1995,15:327-332.
[10] 旺罗,吕厚远,吴乃琴,等. 青藏高原现生禾本科植物的δ13C与海拔高度的关系[J]. 第四纪研究,2003,23(5):573-580. Wang L,Lv H Y,Wu N Q,et al. Altitudinal trends of stable carbon isotope composition for poeceae in Qinghai-Xizang Plateau[J]. Quaternary Sciences,2003,23(5):573-580.
[11] 陈拓,杨梅学,冯虎元,等. 青藏高原北部植物叶片碳同位素组成的空间特征[J]. 冰川冻土,2003,25(1):83-87. Chen T,Yang M X,Feng H Y,et al. Spatial distribution of stable carbon isotope ratio compositions of plant leaves in the north of the Tibetan Plateau[J]. Journal of glaciology and geocryology,2003,25(1):83-87.
[12] 李相博,陈践发,张平中,等.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J]. 沉积学报,1999,17(2):325-329. Li X B,Chen J F,Zhang P Z,et al. The characteristics of carbon isotope composition of modern plants over Qinghai-Tibet Plateau(NE)and its climatic information[J]. Acta Sedimentologica Sinica,1999,17(2):325-329.
[13] Körner C, Farquhar G D,Wong S C. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends[J]. Oecologia,1991,88:30-40.
[14] Morecroft M D,Woodward F I,Marrs R H. Attitudinal trends in leaf nutrient contents, leaf size and δ13C of Alchemilla alpine [J]. Functional Ecology,1992(6):730-740.
[15] 李瑞云,王秋军,高正海,等. 甘肃中部蛇苔(Conocephalum conicum(L.)Dum)表皮特征与稳定碳同位素组成沿海拔的变化[J]. 兰州大学学报:自然科学版,2012,48(2):9-14. Li R Y,Wang Q J,Gao Z H,et al. Variation of epidermal features and stable carbon isotope composition of Conocephalum conicum(L.)Dum through different elevations in central Gansu province[J]. Journal of Lanzhou University:Natural Sciences,2012(2):9-14.
[16] 程根伟.贡嘎山极高山区的降水分布特征探讨[J]. 山地研究,1996,14(3):177-182. Cheng G W. Exploration of precipitation features on extra-high zone of Mt. Gongga[J].Mountain Research,1996,14(3):177-182.
[17] Shi W,Wang G,Han W. Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau,China[J]. PLoS ONE,2012,7(9):e44628.
[18] 王良健.贡嘎山东坡森林土壤类型、发生学基本特征结构的研究[J]. 西南师范大学学报,1991,16(1):117-125. Wang L J. Study on the types genetics features of the forest soils on the east slope of the Gongga Mountain[J]. Journal of Southwest Teachers University,1991,16(1):117-125.
[19] O'Leary,Marion H. Carbon isotope fractionation in plants[J]. Phytochemistry,1981,20(4):553-567.
[20] Sah S P,Brumme R. Altitudinal gradients of natural abundance of stable isotopes of nitrogen and carbon in the needles and soil of a pineforest in Nepal[J]. Journal Forest Science,2003,49:19-26.
[21] 朴河春,朱建明,朱书法,等. 植物营养元素的含量和δ13C值随海拔而变化的特征及营养元素相互作用对碳同位素分馏作用的影响[J]. 地球科学进展,2004,19(S1):412-419. Piao H C,Zhu J M,Zhu S F,et al. Altitudinal variations of nutrient concentrations and carbonisotope compositions in a C3 plant and the effects of nutrient interactions on carbon isotope discrimination in limestone areas of southwest China[J]. Advance in Earth Sciences,2004,19(S1):412-419.
[22] Körner C,Farquhar G D,Roksandie Z. A global survey of carbon isotope discrimination in plants from high altitude[J]. Oecologia,1988,74:623-632.
[23] Sparks J P,Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects[J]. Oecologia,1997,109:362-367.
[24] Lajiha K,Getz J. Photosynthesis and water-use efficiency in pinyon-juniper communities along an elevation gradient in northern New Mexico[J]. Oecologia,1993,94:95-101.
[25] Beerling D J,Mattey D P,Chaloner W G. Shifts in the δ13C composition of Salix herbacea L. leaves in response to spatial and temporal gradients of atmospheric CO2 concentration[J]. Proceeding of the Royal Society of London: Series B,1993,253:53-60.
[26] Josep Peñuelas,Iolanda Filella,Jaume Terradas. Variability of plant nitrogen and water use in a 100m transect of a subdesertic depression of the Ebro valley(Spain)characterized by leaf δ13C and δ15N[J]. Acta Oecologica,1999,20:119-123.

Last Update: 2014-12-31