我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

松材线虫与拟松材线虫hsp70和hsp90基因结构特征及其分子进化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年01期
Page:
11-16
Column:
专题报道
publishdate:
2015-01-30

Article Info:/Info

Title:
The gene structural character and molecular evolution of hsp70 and hsp90 in Bursaphelenchus xylophilus and B. mucronatus
Article ID:
1000-2006(2015)01-0011-06
Author(s):
XU Jiantao HUANG Lin YE Jianren*
Collaborative Innovation Center of Sustainable Forestry in Southern China, Jinangsu Province Key Laboratory for Prevention and Management of Invasive Species, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Bursaphelenchus xylophilus B. mucronatus polymorphism synonym codon molecular evolution
Classification number :
S763; Q781
DOI:
10.3969/j.issn.1000-2006.2015.01.003
Document Code:
A
Abstract:
Transcriptome polymorphism is an important aspect for species diversity and species molecular evolution. HSP70 and HSP90 are high-conserved in eukaryotic species. In the study, we analyzed the gene structural variation about hsp70 and hsp90, and the phylogenetic relationships between Bursaphelenchus xylophilus and B. mucronatus. The results showed that parallels and distinctions coexisted in both hsp genes of B. xylophilus and B. mucronatus. Both HSP70s shared 99% similarities, and only 9 of 642 amino acids showed differences in both high-conserved amino sequences, which were caused by 13 nucleic acid bases. Meanwhile, HSP90s possessed of 92% similarities in B. xylophilus and B. mucronatus. There were differences in the 10 codons encoding 17 amino acids between gABG and gmc2, while gABO and gmc19 showed differences in the 5 codons. These diversities were valuable for species diversity and molecular evolution. Moreover, the phylogenetic trees of hsp70 and hsp90 showed high homology of B. xylophilus and B. mucronatus with other nemathelminthes species.

References

[1] 黄慧芳,马飞. 热激蛋白的分子进化研究[J]. 厦门大学学报:自然科学版, 2004,43(增刊): 166-170.Huang H F,Ma F.Research on molecular evolution of heat shock protein[J]. Journal of Xiamen University: Natural Science,2004,43(Suppl):166-170.
[2] Robertson I, Robertson W M, Jones J T. Direct analysis of the selection of the potato cyst Globodera rostochiensis[J]. Parasitology, 1999,119(2):167-176.
[3] 金钢,叶建仁. 不同线虫在黑松体内的扩展速度与致病性[J]. 南京林业大学学报:自然科学版, 2007,31(1):5-9.Jin G,Ye J R.Research on the relationship between the pathogenicity and the distribution velocity of the nematode in seedling of Pinus thunbergii[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2007,31(1):5-9.
[4] 杨宝君,王秋丽,邹卫东,等. 关于拟松材线虫对松树致病性的研究[C]//杨宝君. 中国松材线虫的流行与治理. 北京: 中国林业出版社, 1995: 47-49.Yang B J,Wang Q L,Zhou W D, et al. Research on pathogenicity of Bursaphelenchus mucronatus in Pinus[C]//Yang B J. Popularity and management of Bursaphelenchus xylophilus in China. Beijing: China Forestry Publication,1995:47-49.
[5] 汤坚,叶建仁,陈凤毛,等. 松树体内寄生线虫种类及其致病性[J]. 南京林业大学学报:自然科学版, 2008, 32(3): 112-116.Tang J,Ye J R,Chen F M,et al. Species of parasitic nematode in pine host and pathogenicity[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2008, 32(3): 112-116.
[6] 张治宇,林茂松,余本渊. 拟松材线虫对黑松苗的致病性[J]. 南京农业大学学报,2004, 27(1): 46-50.Zhang Z Y,Lin M S,Yu B Y.Pathogenicity of Bursaphelenchus mucronatus on the seedlings of black pine[J]. Journal of Nanjing Agricultural University, 2004, 27(1): 46-50.
[7] Kikuchi T, Jones J T, Aikawa T, et al. A family of glycosyl hydrolase family 45 celluloses from the pinewood nematode Bursaphelenchus xylophilus[J]. FEBS Letters, 2004, 572: 201-205.
[8] 黄麟,叶建仁,刘雪莲. 松材线虫病病原种群分化研究现状[J]. 南京林业大学学报:自然科学版, 2009, 33(4): 135-139.Huang L,Ye J R,Liu X L. Advance in population differentiation of Bursaphelenchus xylophilus[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2009, 33(4): 135-139.
[9] 黄麟,郑维佳,吴小芹,等.拟松材线虫两个HSP基因的查除与分析[J].南京林业大学学报:自然科学版,2009,33(2):1-4.Huang L, Zheng W J, Wu X Q, et al. Coning and analysis of two HSP genes from Bursaphelenchus mueronatus[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2009, 33(2):1-4.
[10] Sharp P M, Haney T M F, Mosurski K R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes[J]. Nucleic Acids Research, 1986, 14: 5125-5143.
[11] Liu Q, Feng Y, Xue Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa[J]. Mitochondrion, 2004, 4: 313-320.
[12] 刘蓉,奇震,朱小蓬,等. 真核生物DNA非编码区的组分分析[J]. 生物化学与生物物理进展, 2002, 29(4): 583-586.Liu R,Qi Z,Zhu X P,et al. Component analysis of non-coding DNA in eukaryotic[J]. Progress in Biochemistry and Biophysics, 2002, 29(4): 583-586.
[13] 张乐,金龙国,罗玲,等. 大豆基因组和转录组的核基因密码子使用偏好性分析[J]. 作物学报, 2011, 37(6): 965-974.Zhang L,Jin L G,Luo L,et al. Analysis of nuclear gene codon bias on soybean genome and transcriptome[J]. Acta Agronomica Sinica, 2011, 37(6): 965-974.
[14] Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression[J]. Trends in Biotechnology, 2004, 22(7): 346-353.
[15] 杨琳,柯杨. 非编码RNA——功能基因组研究的新热点[J]. 北京大学学报:医学版, 2006, 38(4): 444-446. Yang L,Ke Y. Non-coding RNA—Top news of research on functional genomes[J]. Journal of Peking University: Health Sciences,2006, 38(4): 444-446.
[16] Bonekamp F, Dalboge H, Christensen T,et al. Translation rates of individual codons are not correlated with tRNA abundances or with frequencies of utilization in Escherichia coli [J]. Journal of Bacteriology, 1987, 171(11): 5812-5816.
[17] Dos R M, Wernish L, Savva R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome [J]. Nucleic Acids Research, 2003, 31(23): 6976-6985.
[18] Xia X. Maximizing transcription efficiency causes codon usage bias [J]. Genetics, 1996, 144(3): 1309-1320.

Last Update: 2015-01-31