我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

喀斯特地区不同植被恢复类型对土壤化学及 微生物生物量的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年05期
Page:
73-80
Column:
研究论文
publishdate:
2015-10-20

Article Info:/Info

Title:
Effects of different vegetation recovery types on soil chemical and microbial biomass properties in Maolan Karst region
Article ID:
1000-2006(2015)05-0073-08
Author(s):
LU Xiaoqiang1 YANG Wanxia2 XI Yueming3 DING Fangjun4
1.Nanjing Institute of Environmental Sciences, MEP, Nanjing 210042, China;
2.College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
3. Nanjing Forestry Station, Nanjing 210036, China;
4.Guizhou Academy of Forestry Sciences, Guiyang 550011, China
Keywords:
Karst region soil nutrients soil microbial biomass vegetation recovery types
Classification number :
S714
DOI:
10.3969/j.issn.1000-2006.2015.05.012
Document Code:
A
Abstract:
In the past two decades, numerous attempts(afforestation, natural regeneration, etc.)have been made to promote recovery of the degraded soil such as reconverting farmlands to forestlands in Guizhou Karst region, southwest of China. For better understanding of effects of different vegetation types on the chemical and microbial biomass properties of the soil, five vegetation types, namely natural forest(control), natural regeneration, bamboo plantation, pine plantation and grassland(control), were investigated in this region. The results indicated: a range of soil pH from near neutral was observed, as a result of weathering and eluviation in the Karst area. Soil organic carbon, total nitrogen, total phosphorus, calcium, magnesium, potassium, sodium varied from 23.4-142, 1.5-13.5, 0.1-0.9, 2.7-16.4, 1.7-5.9, 2.0-7.1, and 0.13-0.48 g/kg, respectively. Soil ammonium-N and nitrate-N varied from 0.43-8.83, and 0.01-9.71 mg/kg, respectively. Exchangeable calcium ion, magnesium ion, potassium ion, sodium ion varied from 10.32-33.41, 0.57-5.58, 0.05-0.34, 0.02-0.03 cmol/kg, respectively. Soil microbial biomass carbon, soil microbial biomass nitrogen, and soil microbial biomass phosphorus varied from 388.3-3 191.8, 65.4-624.8, and 3.9-67.5 mg/kg, respectively. The chemical and microbial biomass properties of the soil differed significantly under different vegetation types. Soil chemical properties under natural regeneration with a higher organic matter content showed significantly higher values than those under other vegetation types. Higher microbial biomass carbon, nitrogen and phosphorus values were also observed in natural forest and natural regeneration. Results from this study suggested single-species plantations, especially that the pure plantation of Pinus massoniana had a negative impact on soil chemical and microbial biomass properties, while the natural regeneration might be a more effective way for improving soil quality in the degraded Karst region.

References

[1] Yuan D X. Rock desertification in the subtropical Karst of south China[J]. Zeitschrift für Geomorphologie, 1997, 108(2): 81-90.
[2] 张小勇, 卫海燕. 延安市1999—2008年植被恢复的成效分析[J]. 水土保持通报, 2013, 33(2): 218-222. Zhang X Y, Wei H Y. Vegetation restoration effects of implementation of return grain to green program in Yan'an city during 1999-2008[J]. Bulletin of Soil and Water Conservation, 2013, 33(2):218-225.
[3] Bashkin M A, Binkley D. Changes in soil carbon following afforestation in Hawaii[J]. Ecology, 1998, 79(3): 828-833.
[4] Maloney K O, Garten Jr C T, Ashwood T L. Changes in soil properties following 55 years of secondary forest succession at Fort Benning. Georgia, USA[J]. Restoration Ecology, 2007, 16(3): 503-510.
[5] Paul M, Catterall C P, Pollard P C, et al. Recovery of soil properties and functions in different rainforest restoration pathways[J]. Forest Ecology Management, 2010, 259(10): 2083-2092.
[6] Erickson J E, Cisar J L, Volin J C, et al. Comparing nitrogen runoff and leaching between newly established St. Augustinegrass Turf and an alternative residential landscape[J]. Crop Science Society of America, 2001, 41(6): 1889-1895.
[7] Sparling G P. Soil microbial biomass, activity and nutrient cycling as indicators of soil health[C]// Pankhurst C, Doube B M, Gupta V V S R. Biological Indicators of Soil Health, CAB International. Wallingford, 1997:97-119.
[8] 魏媛, 张金池,俞元春, 等. 贵州高原退化喀斯特植被恢复过程中土壤微生物数量的变化特征[J]. 浙江林学院学报, 2009, 26(6): 842-848. Wei Y, Zhang J C, Yu Y C, et al.Ecological characteristics of soil microbial amount during succession of degraded Karst vegetation on the Guizhou Plateau[J]. Journal of Zhejiang Forestry College, 2009, 26(6):842-848.
[9] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[10] Joergensen R G, Brookes P C. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 m K2SO4 soil extracts[J], Soil Biology Biochemistry, 1990, 22(8): 1023-1027.
[11] Tian Y, Haibara K, Toda H, et al. Microbial biomass and activity along a natural pH gradient in forest soils in a Karst region of the upper Yangtze River, China[J], Journal of Forest Research, 2008, 13(4): 205-214.
[12] 游秀花, 蒋尔可. 不同森林类型土壤化学性质的比较研究[J]. 江西农业大学学报, 2005, 27(3): 357-360. You X H, Jiang E K. A study on soil chemical properties of different forest types[J]. Acta Agriculturae Universitatis Jiangxiensis, 2005, 27(3):357-360.
[13] 王世杰, 卢红梅,周运超,等. 茂兰喀斯特原始森林土壤有机碳的空间变异性与代表性土样采集方法[J]. 土壤学报,2007,44(3):475-483. Wang S J, Lu H M, Zhou Y C, et al. Spatial variability of soil organic carbon and representative soil sampling method in Maolan Karst virgin forest[J]. Acta Pedologica Sinica, 2007, 44(3):475-483.
[14] 张平究, 潘根兴.不同植被群落下喀斯特土壤养分及生物化学性质特征[J]. 水土保持学报, 2012, 26(1): 77-84. Zhang P J, Pan G X. Characteristics of soil nutrients and biochemical properties under different vegetation communities in Karst area[J].Journal of Soil and Water Conservation, 2012, 26(1):77-80.
[15] 刘方, 王世杰, 刘元生, 等. 喀斯特石漠化过程土壤质量变化及生态环境影响评价[J]. 生态学报, 2005,25(3): 639-644. Liu F, Wang S J, Liu Y S, et al. Changes of soil quality in the process of Karst rocky desertification and evaluation of impact on ecological environment[J]. Acta Ecologica Sinica, 2005, 25(3): 639-644.
[16] 马建军, 李青丰, 张树礼. 沙棘与不同类型植被配置下土壤微生物、养分特征及相关性研究[J]. 干旱区资源与环境, 2007, 21(6):163-167. Ma J J, Li Q F, Zhang S L. The correlation among soil microorganism and soil nutrient in different types of mixed stands of Hippophae rhamnoides[J]. Journal of Arid Land Resources and Environment, 2007, 21(6):163-167.
[17] 刘璐,宋同清,彭晚霞,等. 木论喀斯特自然保护区土壤微生物生物量的空间格局[J]. 生态学报,2012,32(1):207-214. Liu L, Song T Q, Peng W X, et al. Spatial heterogeneity of soil microbial biomass in Mulun National Nature Reserve in Karst area[J]. Acta Ecologica Sinica, 2012, 32(1):207-214.
[18] Arunachalam A, Arunachalam K. Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India[J]. Plant and Soil, 2000, 223(1-2): 187-195.
[19] Martikainen P J, Palojärvi A. Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils[J]. Soil Biology and Biochemistry, 1990, 22(6): 797-802.
[20] Diaz-Raviña M, Carballas T, Acea M J. Microbial biomass and metabolic activity in four acid soils[J]. Soil Biology and Biochemistry, 1988, 20(6): 817-823.
[21] 张海燕,肖延华,张旭东. 土壤微生物量作为土壤肥力指标的探讨[J].土壤通报,2006, 37(3): 422-425. Zhang H Y, Xiao Y H, Zhang X D, et al. Microbial biomass as an indicator for evaluation of soil fertility properties[J]. Chinese Journal of Soil Science, 2006, 37(3): 422-425.
[22] 金发会, 李世清, 卢红玲, 等. 石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系[J]. 应用生态学报, 2007,18(12): 2739-2746. Jin F H, Li S Q, Lu H L, et al. Relationships of microbial biomass carbon and nitrogen with particle composition and nitrogen mineralization potential in calcareous soil[J]. Chinese Journal of Applied Ecology, 2007,18(12): 2739-2746.
[23] 彭佩钦, 吴金水, 黄道友, 等. 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响[J]. 生态学报, 2006, 26(7): 2261-2267. Peng P Q, Wu J S, Huang D Y, et al. Microbial biomass C, N, P of farmland soils in different land uses and cropping systems in Dongting Lake region[J]. Acta Ecologica Sinica, 2006, 26(7): 2261-2267.

Last Update: 2015-10-15