我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同林龄杉木人工林根生物量及其相容性模型(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年06期
Page:
81-86
Column:
研究论文
publishdate:
2015-11-30

Article Info:/Info

Title:
Root biomass of the Chinese fir at different ages and its compatible models
Article ID:
1000-2006(2015)06-0081-06
Author(s):
TU Hongtao1 WAN Jie2 SUN Yujun1* MEI Guangyi1 LIU Suzhen1
1.Key Laboratory for Silviculture and Conservation,Ministry of Education, Beijing Forestry University, Beijing 100083, China;
2.The Center of the Project Management of World Bank Loan, National Forestry Bureau, Beijing 100714, China
Keywords:
Chinese fir plantation root biomass distribution compatible model
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.2015.06.015
Document Code:
A
Abstract:
Based on Chinese fir plantation in Fujian Province, we studied the proportion of root biomass of each component(root stake, thick-root, medium-root, small-root, fine-root)with the forest age variation through the fixed sample plot method. We constructed the optimum biomass model of root stake, thick-root, medium-root, small-root, fine-root by using R analysis software. According to controlling the volume and component of root, we built the compatible models and evaluated the models. Results showed that root biomass of the average individual tree decreased with planting age increase. Biomasses of different root diameter classes ranked as root stake > thick-root > medium-root > small-root> fine-root. Among them root stake and thick-root accounted for more than 80% of total root biomass. So the thick root were mainly distributed in the 20-80 cm soil layer. The nonlinear compatible model could be established quickly by using R analysis software. It could completely and objectively reflect the distribution relationship of biomasses among various components(R2>0.77,P>84.7,e<0.153), solve the incompatibility among the components and improve the accuracy of the models.

References

[1] Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate,climatic forest type and species[J].Plant and Soil,1995,187(2):159-219.
[2] Hendrick R L,Pregitzer K S.Spatial variation in tree root distribution and growth associated with minirhizotrons[J].Plant and Soil,1992,143(2):283-288.
[3] Gordon W S,Jackson R B.Nutrient concentrations in fine roots[J].Ecology,2000,81(1):275-280.
[4] 刘波,余艳峰,张贇齐,等.亚热带常绿阔叶林不同林龄细根生物量及其养分[J]. 南京林业大学学报:自然科学版,2008,32(5):81-84. Liu B, Yu Y F, Zhang Y Q, et al. Fine-root biomass and related nutrients in different aged stands of subtropical evergreen broad-leaved forest[J]. Journal of Nanjing Forestry University: Natural Sciences Edition,2008,32(5):81-84.
[5] 孙志虎,牟长城,孙龙,等.采用地统计学方法对落叶松人工纯林表层细根生物量的估计[J].植物生态学报,2006, 30(5):771-779. Sun Z H, Mu C C, Sun L, et al. The estimate of fine root biomass in upper soil layer of Larix olgensis plantation by geostatistics method[J]. Journal of Plant Ecology,2006,30(5):771-779.
[6] Nadelhoffer K J,Raich J W.Fine root production estimates and belowground carbon allocation in forest ecosystems[J].Ecology,1992,73(4):1139-1147.
[7] Persson H. Root dynamics in a young Scots pine stand in central Sweden[J]. Oikos, 1978, 30(3):508-519.
[8] Rytter R M. Biomass production and allocation, including fine-root turnover, and annual N uptake in plysimeter grown basket willows[J]. Forest Ecology and Management, 2001,140(2): 177-192.
[9] 方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19. Fang X,Tian D L,Xiang W H. Density,storage and distribution of carbon in chinese fir plantation at fast growing stage[J].Scientia Silvae Sinicae, 2002,38(3):14-19.
[10] 王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(l):13-16. Wang X K,Feng Z W,Ouyang Z Y. Vegetation carbon storage and density of forest ecosystems in China[J].Chinese Journal of Applied Ecology,2001,12(l):13-16.
[11] 秦武明,何斌,余浩光,等.马占相思人工林不同年龄阶段的生物生产力[J].东北林业大学学报, 2007, 35(1): 22-24. Qin W M,He B,Yu H G,et al. Biomass productivity of acacia mangium plantations of different age classes[J].Journal of Northeast Forestry University, 2007, 35(1): 22-24.
[12] 孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J].生态学报, 2007, 27(5): 1756-1762. Sun Y J,Zhang J,Han A H,et al. Biomass and carbon pool of Larix gmelini young and middle age forest in Xing'an Mountains Inner Mongolia[J]. Acta Ecologica Sinica, 2007, 27(5): 1756-1762.
[13] 黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005, 25(12): 3146-3154. Huang Y,Feng Z W,Wang S L, et al. C and N stocks under three plantation forest ecosystems of Chinese fir,Michelia macclurei and their mixture[J]. Acta Ecologica Sinica, 2005, 25(12):3146-3154.
[14] 巨文珍,王新杰,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律[J].生态学报,2011,31(4):1139-1148. Ju W Z,Wang X J,Sun Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J]. Acta Ecologica Sinica,2011,31(4):1139-1148.
[15] 王良桂,朱强根,张焕朝,等.苏北杨树人工林细根生产力与周转[J].南京林业大学学报:自然科学版,2008,32(5):76-80. Wang L G, Zhu Q G, Zhang H C, et al. Annual production and turnover rate of fine roots in poplar plantations in north of Jiangsu[J].Journal of Nanjing Forestry University: Natural Sciences Edition,2008,32(5):76-80.
[16] Chojnacky D C. Allometric scaling theory applied to FIA biomass estimation[C]//Proceedings of the third annual forest in ventory and analysis symposium. Gen Tech Rep NC,230, 2002: 96-102.
[17] Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research, 2001, 31(5): 865-878.
[18] Bi H, Turner J, Lambert M J. Additive biomass equations for native eucalypt forest trees of temperate Australia[J]. Trees, 2004, 18(4): 467-479.
[19] 马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667. Ma W, Sun Y J, Guo X Y, et al. Carbon storage of Larix olgensis plantation at different stand ages[J]. Acta Ecologica Sinica,2010,30(17):4659-4667.
[20] 曾伟生, 夏忠胜, 朱松, 等. 贵州人工杉木相容性立木材积和地上生物量方程的建立[J]. 北京林业大学学报, 2011, 33(4):1-6. Zeng W S,Xia Z S,Zhu S, et al.Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Gui zhou[J].Journal of Beijing Forestry University, 2011,33(4):1-6.
[21] 蔡兆炜, 孙玉军,施鹏程. 基于非线性度量误差的杉木相容性生物量模型[J]. 东北林业大学学报, 2014, 42(9):28-32. Cai Z W, Sun Y J, Shi P C. Compatible tree biomass models for Chinese fir plantations based on nonlinear measurement error[J]. Journal of Northeast Forestry University,2014,42(9): 28-32.
[22] 程堂仁, 冯菁,马钦彦, 等. 小陇山油松林乔木层生物量相容性线性模型[J]. 生态学杂志, 2008, 27(3):317-322. Cheng T R,Feng J,Ma Q Y, et al. Linear compatible models of tree layer biomass of Pinus tabulaeform plantation at different stand ages[J]. Acta Ecologica Sinica,2010,30(17):4659-4667.
[20] 曾伟生, 夏忠胜, 朱松, 等. 贵州人工杉木相容性立木材积和地上生物量方程的建立[J]. 北京林业大学学报, 2011, 33(4):1-6. Zeng W S,Xia Z S,Zhu S, et al.Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Gui zhou[J].Journal of Beijing Forestry University, 2011,33(4):1-6.
[21] 蔡兆炜, 孙玉军,施鹏程. 基于非线性度量误差的杉木相容性生物量模型[J]. 东北林业大学学报, 2014, 42(9):28-32. Cai Z W, Sun Y J, Shi P C. Compatible tree biomass models for Chinese fir plantations based on nonlinear measurement error[J]. Journal of Northeast Forestry University,2014,42(9): 28-32.
[22] 程堂仁, 冯菁,马钦彦, 等. 小陇山油松林乔木层生物量相容性线性模型[J]. 生态学杂志, 2008, 27(3):317-322. Cheng T R,Feng J,Ma Q Y, et al. Linear compatible models of tree layer biomass of plantations in Xiaolong Mountains[J].Chinese Journal of Ecology, 2008,27(3): 317-322.

Last Update: 2015-11-30