我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同林分密度油松人工林生物量分配模式(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年06期
Page:
87-92
Column:
研究论文
publishdate:
2015-11-30

Article Info:/Info

Title:
Biomass allocation in relation to stand density in Pinus tabuliformis plantation
Article ID:
1000-2006(2015)06-0087-06
Author(s):
JIA Quanquan LUO Chunwang LIU Qijing* LIU Liting LI Junqing
College of Forestry, Beijing Forestry University, Beijing 100083, China
Keywords:
nested regression method biomass allocation Pinus tabuliformis stand density
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.2015.06.016
Document Code:
A
Abstract:
The biomass allocation pattern is critical for understanding individual growth processes and modeling terrestrial ecosystem carbon cycles in the context of global climate change. Our objective was to determine the effects of stand density on biomass allocation pattern in a Pinus tabuliformis plantation in Beijing, China. Eighteen sample trees for aboveground components and eleven sample trees for belowground components were used for developing DBH-biomass models by the nested regression method. Thirty-three temporary plots(20 m×30 m)with different stand densities(267-3 367 trees/hm2)were investigated by recording DBH of all trees over 5 cm DBH in July—August 2012. All components exhibited significant variations across the surveyed plots with different stand densities. Above and below ground biomass ranged from 20.74 to 141.25 t/hm2 and 5.36 to 36.92 t/hm2, respectively. The average biomass ratio of root to shoot was 0.276, and increased from 0.223 to 0.313 as stands becoming denser. In addition, with increasing stand density, the proportion of stem and branch to total forest biomass decreased, while foliage, fine root and coarse root biomass increased. The functional balance theory is tested in part by our results, which were also improtant for accurate estimation of ecosystem biomass and carbon accounting.

References

[1] Reich P B, Luo Y, Bradford J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Natl Acad Sci, 2014, 111(38): 13721-13726.
[2] Zhou X B, Zhang Y M, Niklas K J. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China[J]. Ann Bot, 2014, 113(3): 501-511.
[3] Shipley B, Meziane D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation[J]. Funct Ecol, 2002, 16(3): 326-331.
[4] McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Funct Ecol, 2007, 21(4): 713-720.
[5] Kobe R K, Iyer M, Walters M B. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen[J]. Ecology, 2010, 91(1): 166-179.
[6] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1): 30-50.
[7] Cairns M A, Brown S, Helmer E H, et al. Root biomass allocation in the world's upland forests[J]. Oecologia, 1997, 111(1): 1-11.
[8] Gower S T, Gholz H L, Nakane K, et al. Production and carbon allocation patterns of pine forests[J]. Ecological Bulletins, 1994(43): 115-135.
[9] Tateno R, Hishi T, Takeda H. Above-and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen[J]. For Ecol Manage, 2004, 193(3): 297-306.
[10] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Funct Plant Biol, 2000, 27(12): 1191-1191.
[11] Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine[J]. Ecol Appl, 2004, 14(2): 460-475.
[12] Pearson J A, Fahey T J, Knight D H. Biomass and leaf area in contrasting lodgepole pine forests[J]. Can J For Res, 1984, 14(2): 259-265.
[13] Litton C M, Ryan M G, Tinker D B, et al. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density[J]. Can J For Res, 2003, 33(2): 351-363.
[14] Sloan V L, Fletcher B J, Press M C, et al. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems[J]. Global Change Biol, 2013, 19(12): 3668-3676.
[15] Wang R L, Cheng R M, Xiao W F, et al. Spatial heterogeneity of fine root biomass of Pinus massoniana forests in the Three Gorges Reservoir Area, China[J]. Forest Science and Practice, 2013, 15(1): 13-23.
[16] Brassard B W, Chen H Y H, Bergeron Y, et al. Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada[J]. Biomass Bioenergy, 2011, 35(10): 4189-4196.
[17] Levia D F. A generalized allometric equation to predict foliar dry weight on the basis of trunk diameter for eastern white pine(Pinus strobus L.)[J]. For Ecol Manage, 2008, 255(5): 1789-1792.
[18] Finer L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. For Ecol Manage, 2011, 261(2): 265-277.
[19] Xiang W H, Wu W, Tong J, et al. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest[J]. Forestry, 2013, 86(3): 343-351.
[20] 刘琪璟. 嵌套式回归建立树木生物量模型[J]. 植物生态学报, 2009, 33(2): 331-337. Liu Q J. Nested regression for establishing tree biomass equations[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 331-337.
[21] 马钦彦, 谢征鸣. 中国油松林储碳量基本估计[J]. 北京林业大学学报, 1996, 18(3): 31-34. Ma Q Y, Xie Z M. Estimation of carbon stored in Chinese pine forests[J]. Journal of Beijing Forestry University, 1996, 18(3): 31-34.
[22] Zhang B, Li W H, Xie G D, et al. Water conservation of forest ecosystem in Beijing and its value[J]. Ecol Econ, 2010, 69(7): 1416-1426.
[23] 王光华. 北京森林植被固碳能力研究[D]. 北京: 北京林业大学, 2012. Wang G H. Carbon sequestration capability of forest vegetation in Beijing[D]. Beijing: Beijing Forestry University, 2012.
[24] 孟宪宇. 测树学[M].3版. 北京: 中国林业出版社, 2006: 25-26.
[25] Niiyama K, Kajimoto T, Matsuura Y, et al. Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia[J]. J Trop Ecol, 2010, 26(3): 271-284.
[26] Schmid I. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech[J]. Basic Appl Ecol, 2002, 3(4): 339-346.
[27] Mokany K, Raison R, Prokushkin A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biol, 2006, 12(1): 84-96.
[28] 白静, 田有亮, 韩照日格图, 等. 油松人工林地上生物量、叶面积指数与林分密度关系的研究[J]. 干旱区资源与环境, 2008, 22(3): 183-187. Bai J, Tian Y L, Han Z R G T, et al. The research on the relationship between the ground biomass, the leaf area index and the stand density in Pinus tabulaeformis artificial forest[J]. Journal of Arid Land Resources and Environment, 2008, 22(3): 183-187.
[29] 肖兴翠, 李志辉, 唐作钧, 等. 林分密度对湿地松生物量及生产力的影响[J]. 中南林业科技大学学报, 2011, 31(3): 123-129. Xiao X C, Li Z H, Tang Z J, et al. Effects of stand density on biomass and productivity of Pinus elliottii[J]. Journal of Central South University of Forestry & Technology, 2011, 31(3): 123-129.
[30] Burkes E C, Will R E, Barron-Gafford G A, et al. Biomass partitioning and growth efficiency of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities[J]. For Sci, 2003, 47(2): 224-234.
[31] 王宁, 王百田, 王瑞君, 等. 晋西山杨和油松生物量分配格局及异速生长模型研究[J]. 水土保持通报, 2013, 33(2): 151-155,159. Wang N, Wang B T, Wang R J, et al. Biomass allocation patterns and allometric models of Populus davidiana and Pinus tabuliformis Carr. in west of Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 151-155,159.
[32] 梁建萍, 张变香, 杨慧斌, 等. 油松人工林林木生物量的研究[J]. 山西农业大学学报: 自然科学版, 2000, 20(4): 338-341. Liang J P, Zhang B X, Yang H B, et al. Research on the tree biomass of Pinus tabuliformis Carr.[J]. Journal of Shanxi Agriculture University, 2000, 20(4): 338-341.
[33] Li H, Li C Y, Zha T S, et al. Patterns of biomass allocation in an age-sequence of secondary Pinus bungeana forests in China[J]. The Forestry Chronicle, 2014, 90(2): 169-176.
[34] Niklas K J. Modelling below-and above-ground biomass for non-woody and woody plants[J]. Ann Bot, 2005, 95(2): 315-321.
[35] 马钦彦. 中国油松生物量的研究[J]. 北京林业大学学报, 1989,11(4): 1-10. Ma Q Y. A study on the biomass of Chinese pine forests[J]. Journal of Beijing Forestry University, 1989,11(4): 1-10.
[36]Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China[J]. For Ecol Manage, 2008, 255(12): 4007-4020.
[37] Helmisaari H S, Derome J, Nöjd P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiol, 2007, 27(10):1493-1504.
[38] Meinen C, Hertel D, Leuschner C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?[J]. Oecologia, 2009, 161(1): 99-111.
[39] Ugawa S, Miura S, Iwamoto K, et al. Vertical patterns of fine root biomass, morphology and nitrogen concentration in a subalpine fiwave forest[J]. Plant Soil, 2010, 335(1): 469-478.
[40] Koteen L E, Raz-Yaseef N, Baldocchi D D. Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply[J]. Ecohydrology, 2015, 8(2), 294-308.
[41] Vanninen P, Mäkelä A. Fine root biomass of scots pine stands differing in age and soil fertility in southern Finland[J]. Tree Physiol, 1999, 19(12): 823-830.
[42] Xiao C W, Ceulemans R. Allometric relationships for below-and aboveground biomass of young scots pines[J]. For Ecol Manage, 2004, 203(1): 177-186.
[43] Bolte A, Rahmann T, Kuhr M, et al. Relationships between tree dimension and coarse root biomass in mixed stands of European beech(Fagus sylvatica L.)and Norway spruce(Picea abies[L.] Karst.)[J]. Plant Soil, 2004, 264(1-2): 1-11.
[44] Nelson B W, Mesquita R, Pereira J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. For Ecol Manage, 1999, 117(1): 149-167.
[45] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manage, 2006, 222(1): 9-16.
[46] Das D K, Chaturvedi O P. Root biomass and distribution of five agroforestry tree species[J]. Agroforestry Systems, 2008, 74(3): 223-230.

Last Update: 2015-11-30