我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

QCM-D应用于纤维素酶水解分析中的研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年06期
Page:
155-162
Column:
综合述评
publishdate:
2015-11-30

Article Info:/Info

Title:
The application and development of QCM-D in the research on enzymatic hydrolysis of cellulose
Article ID:
1000-2006(2015)06-0155-08
Author(s):
TAN Xu JIN Yongcan*
Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
QCM-D cellulose biosensor adsorption and desorption kinetics of enzymatic hydrolysis
Classification number :
TQ353; Q55
DOI:
10.3969/j.issn.1000-2006.2015.06.027
Document Code:
A
Abstract:
The adsorption and desorption of enzymes on the substrates are critical for bioconversion of cellulosic materials. QCM-D(quartz crystal microbalance with dissipation), different from traditional chemical analysis methods, could reflect the whole dynamic process and the features of kinetics of enzymatic hydrolysis online. QCM-D was a surface-sensitive analytical technique based on the piezoelectric properties of quartz crystal and could sense the mass change in nanoscale. In this review, the operating principle of QCM-D and the preparation methods of the biosensor, as well as the latest developments of the application of QCM-D on the research of enzymatic hydrolysis of cellulosic materials were introduced. Generally, QCM-D gives the information in situ and responses to the surface quality changes on the substrates on top of quartz crystal in real-time through the variations of frequency and dissipation. Thus the adsorption and desorption of enzymes on the substrate, and the dynamic enzymatic hydrolysis could be visually monitored and analyzed. In addition, the relationships between frequency and dissipation obtained from QCM-D reflect the structure information of adsorbed layers. However, there still were part of limitations in enzymatic hydrolysis process. For instance, relatively high demands of film-formation of substrates were needed when using QCM-D. Besides, further researches were required in the aspect of quantitative analysis.

References

[1] Van Dyk J S, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.
[2] Henrissat B. Cellulases and their interaction with cellulose[J]. Cellulose, 1994, 1(3): 169-196.
[3] Martín-Sampedro R, Rahikainen J L, Johansson L-S, et al. Preferential adsorption and activity of monocomponent cellulases on lignocellulose thin films with varying lignin content[J]. Biomacromolecules, 2013, 14: 1231-1239.
[4] Chernoglazov V M, Ermolova O V, Klyosov A. Adsorption of high-purity endo-1,4-β-glucanases from Trichoderma reesei on components of lignocellulosic materials: cellulose lignin and xylan[J]. Enzyme and Microbial Technology, 1988, 10(8): 503-507.
[5] Liu H, Zhu J Y, Chai X S. In situ, rapid and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry[J]. Langmuir, 2011, 27(1): 272-278.
[6] Igarashi K, Uchihashi T, Koivula A,et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface[J]. Science, 2011, 333(6047): 1279-1282.
[7] Suchy M, Linder M B, Tammelin T, et al. Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoring[J]. Langmuir, 2011, 27(14): 8819-8828.
[8] Maurer S A, Bedbrook C N, Radke C J. Cellulase adsorption and reactivity on a cellulose surface from flow ellipsometry[J]. Industrial and Engineering Chemistry Research, 2012, 51(35): 11389-11400.
[9] Cheng G, Datta S, Liu Z,et al. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring[J]. Langmuir, 2012, 28(22): 8348-8358.
[10] Ma A Z, Hu Q, Qu Y B, et al. The enzymatic hydrolysis rate of cellulose decreases with irreversible adsorption of cellobiohydrolase I[J]. Enzyme and Microbial Technology, 2008, 42(7): 543-547.
[11] Ding S Y, Liu Y S, Zeng Y N,et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J] Science, 2012, 338(6110): 1055-1060.
[12] Valasek J. Piezoelectric and allied phenomena in Rochelle Salt[J]. Phys Rev, 1921,17(4):475.
[13] Nomura T, Okuhara M. Frequency shifts of piezoelectric quartz crystals immersed in organic liquids[J]. Analytica Chimica Acta, 1982, 142: 281-284.
[14] Kurosawa S, Tawara E, Kamo N,et al. Oscillating frequency of piezoelectric quartz crystal in solution[J]. Analytica Chimica Acta, 1990, 230(1): 41-49.
[15] Tammelin T, Merta J, Johansson L-S, et al. Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D[J]. Langmuir, 2005, 20(25): 10900-10909.
[16] Kontturi K S, Tammelin T, Johansson L S,et al. Adsorption of cationic starch on cellulose studied by QCM-D[J]. Langmuir, 2008, 24(9): 4743-4749.
[17] Halthur T J, Björklund A, Elofsson U M. Self-assembly/aggregation behavior and adsorption of enamel matrix derivate protein to silica surfaces[J]. Langmuir, 2006, 22(5): 2227-2234.
[18] Malmström J, Agheli H, Kingshott P,et al. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR[J]. Langmuir, 2007, 23(19): 9760-9768.
[19] 马少玲,陆兆文,吴有庭,等. 石英晶体微天平(QCM)在超临界CO2过程中的应用[J]. 化工进展,2007,26(8):1080-1087. Ma S L, Lu Z W, Wu Y T, et al. Applications of quartz crystal microbalance in supercritical carbon dioxide processes[J]. Chemical Industry and Engineering Progress, 2007, 26(8): 1080-1087.
[20] O'Sullivan C K, Guilbault G G.Commercial quartz crystal microbalances-theory and applications[J]. Biosensors and Bioelectronics, 1999, 14(8/9): 663-670.
[21] Wegener J, Janshoff A, Steinem C. The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ[J]. Cell Biochemistry and Biophysics, 2001, 34(1): 121-151.
[22] Rodahl M,Kasemo B H. Frequency and dissipation-factor response to localized liquid deposits on a QCM electrode[J]. Sensors and Actuators, 1996, 37(1/2): 111-116.
[23] Rodahl M, Höök F, Krozer A,et al. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments[J]. Review of Scientific Instruments, 1995, 66(7): 3924-3930.
[24] Tammelin T, Saarinen T, Österberg M,et al. Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure.Application for polyelectrolyte adsorption studies performed with QCM-D[J]. Cellulose, 2006, 13(5): 519-535.
[25] Höök F, Rodahl M, Brzezinski P,et al. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance[J]. Langmuir, 1998, 14(4): 729-734.
[26] Sauerbrey G. Verwendung von schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung[J]. Zeitschrift für Physik, 1959, 155(2): 206-222.
[27] Buttry D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance[J]. ChemInform, 1992, 92(6): 1355-1379.
[28] Voinova M V, Rodahl M, Jonson M,et al. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach[J]. Physica Scripta, 1999, 59(9): 391-396.
[29] Urbakh M, Daikhin L I. Influence of the surface-morphology on the quartz-crystal microbalance response in a fluid[J]. Langmuir, 1994, 10(8): 2836-2841.
[30] Urbakh M, Daikhin L I. Roughness effect on the frequency of a quartz-crystal resonator in contact with a liquid[J]. Physical Review B: Condensed matter, 1994, 49(7): 4866-4870.
[31] 韦晓兰. 基于QCM-D 技术的细菌生物膜研究[J]. 重庆师范大学学报:自然科学版,2014,31(4):136-140. Wei X L. The improvement of the study on bacteria bio-film(BBF)by quartz crystal microbalance with dissipation(QCM-D)[J]. Journal of Chongqing Normal University:Natural Science, 2014, 31(4): 136-140.
[32] Gunnars S, Wågberg L, Stuart M. Model films of cellulose. I. Method development and initial results[J]. Cellulose, 2002(9): 239-249.
[33] Bhushan B. Springer handbook of nanotechnology[M]. Berlin: Springer Verlag, 2006.
[34] Roberts G G. Langmuir-Blodgett films[M]. New York: Plenum Press, 1990.
[35] Kistler S F, Schweizer P M. Liquid film coating: scientific principles and their technological implications[M]. London: Chapman & Hall, 1997.
[36] Ulman A. An introduction to ultrathin organic films[M]. New York: Academic Press, 1991.
[37] Ge C Q, Xie C S, Cai S Z. Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating[J]. Materials Science and Engineering B, 2007, 137(1): 53-58.
[38] Pham V H, Cuong T V, Hur S H,et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951.
[39] 徐常龙,曹小华,柳闽生,等. 自组装单层膜的研究[J]. 江西师范大学学报:自然科学版,2009,33(2):170-174. Xu C L, Cao X H, Liu M S, et al. The study on self-assembled monolayers[J]. Journal of Jiangxi Normal University: Natural Sciences Edition, 2009, 33(2): 170-174.
[40] Hatanaka D, Takemoto Y, Yamamoto K,et al. Hierarchically self-assembled nanofiber films from amylose-grafted carboxymethyl cellulose[J]. Fibers, 2014, 2(1), 34-44.
[41] Edgar C D, Gray D G. Smooth model cellulose I surfaces from nanocrystal suspensions[J]. Cellulose, 2003, 10(4): 299-306.
[42] Ahola S, Salmi J, Johansson L S, et al. Model films from native cellulose nanofibrils: Preparation, swelling, and surface interactions[J]. Biomacromolecules, 2008, 9(4): 1273-1282.
[43] Nguyen N-T, Wereley S T. Fundamentals and applications of microfluidics[M]. Boston: Artech House, 2002.
[44] Toolan D T W, Howse J R. Development of in situ studies of spin coated polymer films[J]. Journal of Materials Chemistry, 2013, 1(4): 603-616.
[45] Kontturi E, Suchy M, Penttilä P, et al. Amorphous characteristics of an ultrathin cellulose film[J]. Biomacromolecules 2011, 12(3): 770-777.
[46] Kontturi E, Thüne P C, Niemantsverdriet J W. Cellulose model surfaces-simplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy[J]. Langmuir, 2003, 19(14): 5735-5741.
[47] Fält S, Wågberg L, Vesterlind E L,et al. Model films of cellulose ID-improved preparation method and characterization of the cellulose film[J]. Cellulose, 2004, 11(2): 151-162.
[48] Roberts G G. Langmuir-blodgett films[J]. Contemporary physics, 1984,25(2):109-128.
[49] 李旸,刘志存. Langmuir-Blodgett膜的研究现状及其应用[J]. 现代生物医学进展, 2009, 9(19): 3779-3793. Li Y, Liu Z C. The research of Langmuir-Blodgett films and its application[J]. Progress in Modern Biomedicine, 2009, 9(19): 3779-3793.
[50] Blodgett K B. Films built by depositing successive monomolecular layers on a solid surface[J]. Journal of the American Chemical Society, 1935, 57(6): 1007-1022.
[51] Pasquini D, Balogh D T, Antunes P A, et al. Surface morphology and molecular organization of lignins in Langmuir-Blodgett films[J]. Langmuir, 2002, 18(17): 6593-6596.
[52] Josefsson P, Henriksson G, Wågberg L. The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases[J]. Biomacromolecules, 2008, 9(1): 249-254.
[53] Yu Z Y, Jameel H, Chang H-M, et al. Quantification of bound and free enzymes during enzymatic hydrolysis and their reactivities on cellulose and lignocellulose[J]. Bioresource Technology, 2013, 147: 369-377.
[54] Hu G, Heitmann J A J, Rojas O J. In situ monitoring of cellulose activity by microgravimetry with a quartz crystal microbalance[J]. Journal of Physical Chemistry B, 2009, 113(44): 14761-14768.
[55] Turon X, Rojas O J, Deinhammer R S. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study[J]. Langmuir, 2008, 24(8): 3880-3887.
[56] Saarinen T, Orelma H, Grönqvist S,et al. Adsorption of different laccases on cellulose and lignin surfaces[J]. Bioresources, 2009, 4(1): 94-110.
[57] Ahola S, Turon X, Osterberg M, et al. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure[J]. Langmuir, 2008, 24(20):11592-11599.
[58] Spence K L, Venditti R A, Rojas O J,et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications[J]. Cellulose, 2010, 17(4): 835-848.
[59] Ferrer A, Quintana E, Filpponen I,et al. Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers[J]. Cellulose, 2012, 19(6): 2179-2193.
[60] Ferrer A, Filpponen I, Rodríguez A,et al. Valorization of residual empty palm fruit bunch fibers(EPFBF)by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper[J]. Bioresource Technology, 2012, 125: 249-255.
[61] Martin-Sampedro R, Filpponen I, Hoeger I C, et al. Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils[J]. ACS Macro Letters, 2012, 1(11): 1321-1325.
[62] Salas C, Rojas O J, Lucia L A, et al. On the surface interactions of proteins with lignin[J]. ACS Applied Materials & Interfaces, 2013, 5(1): 199-206.

Last Update: 2015-11-30