我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

追施氮肥对浙江楠容器苗生长和 叶片养分状况的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年01期
Page:
33-38
Column:
研究论文
publishdate:
2016-01-31

Article Info:/Info

Title:
Effects of topdressing nitrogen on growth and nutrient status in leaves of Phoebe chekiangensis container seedlings
Article ID:
1000-2006(2016)01-0033-06
Author(s):
LI Yingang LIU Xinhong* MA Junwei SHI Congguang YANG Shaozong
Zhejiang Academy of Forestry, Hangzhou 310023, China
Keywords:
Phoebe chekiangensis exponential topdressing container seedling biomass root morphology nutrient status in leaves
Classification number :
S725.5
DOI:
10.3969/j.issn.1000-2006.2016.01.006
Document Code:
A
Abstract:
With the objective of discussing reasonable topdressing method for one-year-old container seedling of Phoebe chekiangensis under production condition, we used conventional and exponential topdressing regimes to study the growth and leaf nutrient status of seedlings. Variance analysis, multi-comparison were used to analyze the effects of different method and amount on the growth, yield and allocation of dry matter, root morphology, nutrient content and uptake in leaves of one-year-old container seedlings. The results showed that with seedling height 24.50, 22.80 and 22.15 cm respectively, treatment 4, 5 using exponential method and treatment 2 using conventional method were 22.01%, 13.92% and 10.31% greater than that of the control treatment(P<0.05). Moreover, the ground diameter of treatment 4(3.74 mm)was greater than that of the control treatment(3.36 mm)significantly. Contrast with control treatment, conventional and exponential topdressing treatment increased their yield of total dry matter. With the yield of treatment 4 30.85% higher than that of the control, significant difference was available between the two treatments. But significant difference was unavailable in root-shoot ratio among treatments. Conventional and exponential topdressing could promote main root length and root length, average diameter, surface area and volume of root. And significant difference was available in root morphology between treatment 4 and control. With the increasing of amount under exponential topdressing, root morphology of treatment 3, 4 and 5 showed a trend of initially increasing and then decreasing. Although significant difference was unavailable in nutrient content of leaves among treatments, the nutrient uptake of leaves of treatment 4, 5 was higher than that of control significantly as a result of significant difference in dry matter. In general, using exponential topdressing with the total amount 200 mg/seedling(treatment 4)was the topdressing method.

References

[1] Wilson E R, Vitols K C, Park A. Root characteristics and growth potential of container and bare-root seedlings of red oak(Quercus rubra L.)in Ontario, Canada[J]. New forests, 2007, 34(2): 163-176.Doi: 10.1007/s11056-007-9046-7.
[2] Oliet J A, Planelles R, Artero F, et al. Field performance of Pinus halepensis planted in mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition[J]. New forests, 2009, 37(3): 313-331.Doi: 10.1007/s11056-008-9126-3.
[3] Timmer V R. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites[J]. New forests, 1997, 13(1-3): 275-295.Doi: 10.1023/A:1006502830067.
[4] 李玲莉,李吉跃,张方秋,等.容器苗指数施肥研究综述[J].世界林业研究,2010, 23(2):22-27.Doi: 10.13348/j.cnki.sjlyyj.2010.02.007. Li L L, Li J Y, Zhang F Q, et al. A review of exponential fertilization of container seedling[J]. World forestry research, 2010, 23(2): 22-27.
[5] 魏红旭,徐程扬,马履一,等.苗木指数施肥技术研究进展[J].林业科学,2010, 46(7):140-146.Doi: 10.11707/j.1001-7488.20100721. Wei H X, Xu C Y, Ma L Y, et al. Advances in study on seedling exponential fertilization regime[J]. Scientia silvae sinicae, 2010, 46(7): 140-146.
[6] Salifu K F, Timmer V R. Nutrient retranslocation response of Picea mariana seedlings to nitrogen supply[J]. Soil science society of America journal, 2001, 65(3): 905-913.Doi: 10.2136/sssaj2001.653905x.
[7] Salifu K F, Jacobs D F, Birge Z K D. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands[J]. Restoration ecology, 2009, 17(3): 339-349.Doi: 10.1111/j.1526-100X.2008.00373.x.
[8] 陈琳,曾杰,徐大平,等.氮素营养对西南桦幼苗生长及叶片养分状况的影响[J].林业科学,2010, 46(5):35-40.Doi: 10.11707/j.1001-7488.20100506. Chen L, Zeng J, Xu D P, et al. Effects of exponential nitrogen loading on growth and foliar nutrient status of Betula alnoides seedlings[J]. Scientia silvae sinicae, 2010, 46(5): 35-40.
[9] 何茜,王冉,李吉跃,等.不同浓度指数施肥方法下马来沉香与土沉香苗期需肥规律[J].植物营养与肥料学报,2012, 18(5):1193-1203.Doi: 10.11674/zwyf.2012.11255. He Q, Wang R, Li J Y, et al. Nutrient uptake of Aquilaria malaccensis and Aquilaria sinensis seedlings in response to different exponential regimes[J]. Plant nutrition and fertilizer science, 2012, 18(5): 1193-1203.
[10] 王力朋,李吉跃,王军辉,等.指数施肥对楸树无性系幼苗生长和氮素吸收利用效率的影响[J].北京林业大学学报,2012, 34(6):55-62.Doi: 10.13332/j.1000-1522.2012.06.021. Wang L P, Li J Y, Wang J H, et al. Effects of exponential fertilization on seedling growth and nitrogen uptake and utilization efficiency of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(6): 55-62.
[11] 王力朋,晏紫伊,李吉跃,等.指数施肥对楸树无性系生物量分配和根系形态的影响[J].生态学报,2012, 32(23):7452-7462.Doi:10.5846/stxb201203040288. Wang L P, Yan Z Y, Li J Y, et al. Effects of exponential fertilization on biomass allocation and root morphology of Catalpa bungei clones[J]. Acta ecologica sinica, 2012, 32(23):7452-7462.
[12] 张金浩,周再知,杨晓清,等.氮素营养对肯氏南洋杉幼苗生长、根系活力及氮含量的影响[J].林业科学,2014, 50(2):31-36.Doi:10.11707/j.1001-7488.20140205. Zhang J H, Zhou Z Z, Yang X Q, et al. Effects of exponential nitrogen loading on growth, root activity and N content of Araucaria cunninghamii seedlings[J]. Scientia silvae sinicae, 2014, 50(2): 31-36.
[13] 张华林,彭彦,谢耀坚,等.两种氮肥施用法对尾巨桉轻基质容器苗生长的影响[J].南京林业大学学报(自然科学版),2014, 38(1):53-58.Doi:10.3969/j.issn.1000-2006.2014.01.010. Zhang H L, Peng Y, Xie Y J, et al. Effects of two Nitrogen application methods on growth of Eucalyptus urophylla×E.grandis container seedlings cultivated with light media[J]. Journal of Nanjing Forestry University(natural science edition), 2014, 38(1): 53-58.
[14] 中国科学院中国植物志编辑委员会.中国植物志:第31卷[M].北京:科学出版社,1982.
[15] 安徽植物志协作组.安徽植物志:第2卷[M].北京:中国展望出版社,1987.
[16] 史晓华,史忠礼.浙江楠种子休眠生理初探[J].浙江林学院学报,1990, 7(4):85-90. Shi X H, Shi Z L. On the physiologic dormancy of Phoebe chekiangensis seed[J]. Journal of Zhejiang Forestry College, 1990, 7(4): 85-90.
[17] 李冬林,向其柏.光照条件对浙江楠幼苗生长及光合特性的影响[J].南京林业大学学报(自然科学版),2004, 28(5):27-31.Doi:10.3969/j.issn.1000-2006.2004.05.007. Li D L, Xiang Q B. Effects of light condition on the growth and photosynthetic characters of Phoebe chekiangensis seedlings[J]. Journal of Nanjing Forestry University(natural sciences edition), 2004, 28(5): 27-31.
[18] 李冬林,向其柏.土壤水分状况对浙江楠幼苗的影响[J].南京林业大学学报(自然科学版),2006, 30(5):112-114.Doi:10.3969/j.issn.1000-2006.2006.05.027. Li D L, Xiang Q B. Effects of soil moisture status on the Phoebe chekiangensis seedings[J]. Journal of Nanjing Forestry University(natural science edition), 2006, 30(5): 112-114.
[19] 杜佩剑,徐迎春,李永荣.浙江楠容器育苗基质的比较和筛选[J].植物资源与环境学报,2008, 17(2):71-76.Doi:10.3969/j.issn.1674-7895.2008.02.013. Du P J, Xu Y C, Li Y R. Comparison and selection on the substrate of container nursery of Phoebe chekiangensis[J]. Journal of plant resources and environment, 2008, 17(2): 71-76.
[20] 中华人民共和国国家林业局. LY/T 1269—1999. 森林植物与森林枯枝落叶层全氮的测定[S].北京:中国标准出版社,1999-11-01.
[21] 中华人民共和国国家林业局. LY/T 1270—1999. 森林植物与森林枯枝落叶层全硅、铁、铝、钙、镁、钾、钠、磷、硫、锰、铜、锌的测定[S].北京:中国标准出版社,1999-11-01.
[22] 范志强,王政权,吴楚,等.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响[J].应用生态学报,2004, 15(9):1497-1501.Doi: 10.3321/j.issn:1001-9332.2004.09.002. Fan Z Q, Wang Z Q, Wu C, et al. Effect of different Nitrogen supply on Fraxinus mandshurica seedling's biomass,N partitioning and their seasonal variation[J]. Chinese journal of applied ecology, 2004, 15(9): 1497-1501.
[23] Malik V, Timmer V R. Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixedwood sites: a bioassay study[J]. Canadian journal of forest research, 1998, 28(2): 206-215.Doi:10.1139/x97-207.
[24] King J S, Thomas R B, Strain B R. Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen[J]. Plant and Soil, 1997, 195(1): 107-119.Doi: 10.1023/A:1004291430748.
[25] Hodge A, Robinson D, Griffiths B S, et al. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete[J]. Plant, cell and environment, 1999, 22(7): 811-820.Doi: 10.1046/j.1365-3040.1999.00454.x.
[26] Farley R A, Fitter A H. The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches[J]. Journal of ecology, 1999, 87(5): 849-859.Doi: 10.1046/j.1365-2745.1999.00396.x.
[27] Jonsson A, Ericsson T, Eriksson G, et al. Interfamily variation in nitrogen productivity of Pinus sylvestris seedlings[J]. Scandinavian journal of forest research, 1997, 12(1): 1-10.Doi: 10.1080/02827589709355377.

Last Update: 2016-02-25