我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

喀纳斯保护区西伯利亚云杉树干液流动态变化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年01期
Page:
65-72
Column:
研究论文
publishdate:
2016-01-31

Article Info:/Info

Title:
Dynamic changes of trunk sap flow of Picea obovata in the Kanas National Nature Reserve
Article ID:
1000-2006(2016)01-0065-08
Author(s):
LIU Hua1SHE Chunyan1BAI Zhiqiang2*LI Qian1LIU Duan2HAN Yanliang2
1. School of Forest &
Landscape Architecture, Anhui Agricultural University, Hefei 230036, China;
2. Institute of Forest Ecology, Xinjiang Forestry Science Academy, Urumqi 830000, China
Keywords:
Picea obovata stem sap flow thermal dissipation method Kanas National Nature Reserve
Classification number :
S715.5; S718.55+4.2
DOI:
10.3969/j.issn.1000-2006.2016.01.011
Document Code:
A
Abstract:
Based on the relationship between sap flow and transpiration, the stem sap flow in different DBH(diameter at breast height)of Picea obovatas on both the sunny and the shady side were monitored using TDP(thermal dissipation method)constantly in the Kanas National Nature Reserve, northwest of Xinjiang. The purpose of this work was to evaluate role of tree size in forest hydrological cycle. The results showed that the changes of the stem sap flow of P. obovatas were multi-peak curves from June to September. Both the starting and peaking time of the stem sap flow of sunny side were consistent with that of the shady side in two DBH class of P. obovatas. The value of stem sap flow in August was highest, and the maximum flow rate in the sunny side of large and P. obovatas of small DBH were 1.45 and 1.19 times of that of shaded side, respectively. The total sap flow flux of P. obovatas of large DBH was 5 974.90 kg, and small one was 1 628.71 kg. On sunny days, the change of stem sap flow was multi-peak curve, but was unimodal type on cloudy days. The sap flow of P. obovatas of small DBH at night persisted longer time path than that large one. The sap flow at night was mainly used for replenishing water on sunny or cloudy days. The mean overnight flow rate of sunny side and shady side of P. obovatas of large DBH on cloudy day were 1.49 and 1.23 times of its on sunny day, and the P. obovatas of small DBH were 1.13 and 1.20 times, respectively. The main environmental factors affected stem sap flow were air temperature, vapor pressure, photosynthetically active radiation, soil temperature, soil humidity and wind speed.

References

[1] Bernacchi C J, VanLoocke A. Terrestrial ecosystems in a changing environment: a dominant role for water[J]. Annual review of plant biology, 2015(66): 599-622.Doi:10.1146/annurev-arplant-043014-114834.
[2] 丁访军, 王兵, 赵广东. 毛竹树干液流变化及其与气象因子的关系[J]. 林业科学, 2011, 47(7):73-81. Ding F J, Wang B, Zhao G D. Sap flow changes of Phyllostachys edulis and their relationships with meteorological factors[J]. Scientia silvae sinicae, 2011, 47(7):73-81.
[3] 岳广阳, 张铜会, 刘新平, 等. 热技术方法测算树木茎流的发展及应用[J]. 林业科学, 2006, 42(8):102-108. Yue G Y, Zhang T H, Liu X P, et al.Development and application of thermal methods in measuring stem sap flow[J]. Scientia silvae sinicae, 2006, 42(8):102-108.
[4] Lüttschwager D, Remus R. Radial distribution of sap flux density in trunks of a mature beech stand[J]. Annnals forest science, 2007, 64(4): 431-438.
[5] 王淼, 姬兰柱, 李秋荣, 等. 长白山地区红松树干呼吸的研究[J]. 应用生态学报, 2005, 16(1):7-13. Wang M, Ji L Z, Li Q R, et al.Stem respiration of Pinus koraiensis in Changbai Mountain[J]. Chinese journal of applied ecology, 2005, 16(1):7-13.
[6] 李广德, 贾黎明, 孔俊杰. 运用热技术检测树干边材液流研究进展[J]. 西北林学院学报, 2008, 23(3): 94-100. Li G D, Jia L M, Kong J J. Advances in thermal techniques on stem sap flow[J]. Journal of Northwest Forestry University, 2008, 23(3): 94-100.
[7] Kume T, Tsuruta K, Komatsu H, et al. Effects of sample size on sap flux-based stand-scale transpiration estimates[J].Tree physiol, 2010, 30(1): 129-138.Doi:10.1093/treephys/tpp074
[8] 殷秀辉, 程飞, 张硕新. 油松树干液流特征及其与环境因子的关系[J]. 西北林学院学报, 2011, 26(5):24-29. Yin X H, Cheng F, Zhang S X. Variation of stem sap flow of Pinus tabulaeformis and its impact factors[J]. Journal of Northwest Forestry University, 2011, 26(5):24-29.
[9] 孙慧珍, 孙龙, 王传宽, 等. 东北东部山区主要树种树干液流研究[J]. 林业科学, 2005, 41(3):36-42. Sun H Z, Sun L, Wang C K, et al. Sapflow of the major tree species in the eastern mountainous region in northeast China[J]. Scientia silvae sinicae, 2005, 41(3):36-42.
[10] 陈金梅, 李守中, 林培治, 等. 桉树与杉木树干液流特征对比研究[J]. 福建林业科技, 2013, 40(1):1-11. Chen J M, Li S Z, Lin P Z, et al. Comparativestudy on the sap flow of Eucalyptus and Chinese fir[J]. Journal of Fujian forestry science and technology, 2013, 40(1): 1-11.
[11] 王艳兵, 德永军, 熊伟, 等. 华北落叶松夜间树干液流特征及生长季补水格局[J]. 生态学报, 2013, 33(5):1375-1385. Wang Y B, De Y J, Xiong W, et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J]. Acta ecologica sinica, 2013, 33(5): 1375-1385.
[12] 王华田, 赵文飞, 马履一. 侧柏树干边材液流的空间变化规律及其相关因子[J]. 林业科学, 2006, 42(7):21-27. Wang H T, Zhao W F, Ma L Y. Spatial variation of sap flow of Platycladus orientalis and it's affecting factors[J]. Scientia silvae sinicae, 2006, 42(7):21-27.
[13] Poyatos R, Cermák J, Llorens P. Variation in the radial patterns of sap flux density in pubescent oak(Quercus pubescens)and its implications for tree and stand transpiration measurements[J]. Tree physiology, 2007, 27(4):537-548.
[14] Delzon S, Sartore M, Granier A, et al. Radialprofiles of sap flow with increasing tree size in maritime pine[J]. Tree physiology, 2004, 24(11): 1285-1293.
[15] Álvaro Lpez-Bernal A, Alcántara E, Villalobos F J. Thermal properties of sapwood of fruit trees as affected by anatomy and water potential: errors in sap flux density measurements based on heat pulse methods[J].Trees,2014,28(6):1623-1634.
[16] 张帆, 刘华, 方岳, 等. 新疆阿尔泰山地天然针叶林林分空间结构特征[J]. 安徽农业大学学报, 2014, 41(4):629-635. Zhang F,Liu H, Fang Y, et al. Stand spatial structure of natural coniferous forest in the Altai Mountains of Xinjiang[J]. Journal of Anhui Agricultural University, 2014, 41(4):629-635.
[17] 叶高, 刘华, 白志强, 等. 喀纳斯自然保护区3种天然林分土壤呼吸速率的动态变化[J]. 东北林业大学学报, 2014, 42(3):77-80. Ye G, Liu H, Bai Z Q, et al. Dynamics of soil respiration rate of three natural forests in Kanas Nature Reserve[J]. Journal of Northeast Forestry University, 2014, 42(3):77-80.
[18] 方岳, 刘华, 臧润国, 等. 新疆喀纳斯保护区森林植被碳储量、碳密度研究[J]. 南京林业大学学报(自然科学版), 2014, 38(6):17-22. Fang Y, Liu H, Zang R G, et al. Spitial pattern of carbon storage and carbon density in forest vegetation of the Kanas National Natural Reserve[J]. Journal of Nanjing Forestry University(natural sciences edition), 2014, 38(6):17-22.
[19] 刘翠玲, 潘存德, 巴扎尔别克·阿斯勒汗, 等. 自然火干扰对新疆喀纳斯旅游区森林景观树种结构的影响[J]. 植物生态学报, 2009, 33(3):555-562. Liu C L, Pan C D, Bazhaerbieke·Asiliehan, et al. Effects of natural fire disturbance on structure of tree species in Kanas Tourism District, Xinjiang, China[J]. Chinese journal of plant ecology, 2009, 33(3):555-562.
[20] Granier A. Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements[J]. Tree physiology, 1987, 3(4):309-320.
[21] 蒋文伟, 汤富彬, 刘志梅, 等. 天目山柳杉古树的液流特征研究[J]. 林业科学研究, 2012, 25(1):58-64. Jiang W W, Tang F B, Liu Z M, et al. Study on the sap flow characters of two old trees of Cryptomeria fortune on Tianmu Mountain[J]. Forest research, 2012, 25(1):58-64.
[22] Daley M J, Phillips N G. Interspecific variation in night time transpiration and stomatal conductance in a mixed in a mixed new England deciduous forest[J]. Tree physiology, 2006, 26(4):411-419.
[23] 王华, 赵平, 蔡锡安, 等. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植被生态学报, 2007, 31(7):777-786. Wang H, Zhao P, Cai X A, et al. Partitioning of night sap flow of Acacia mangium and its implication for estimating whole-tree transpiration[J]. Journal of plant ecology, 2007, 31(7): 777-786.
[24] Cˇermák J, Kucˇera J, Bauerle W L, et al. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees[J]. Tree physiology, 2007, 27(2):181-198.
[25] Phillips N G, Ryan M G, Bond B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree physiology, 2003, 23(4): 237-245.
[26] 梅婷婷, 赵平, 倪广艳, 等. 树木胸径大小对树干液流变化格局的偏度和时滞效应[J]. 生态学报, 2012, 32(22):7018-7026. Mei T T, Zhao P, Ni G Y, et al. Effect of stem diameter at breast height on skewness of sap flow pattern and time lag[J]. Acta ecologica sinica, 2012, 32(22):7018-7026.
[27] 苏芳莉, 赵鸿坤, 郭成久, 等. 小钻杨树干液流特征及其与环境因子的关系[J]. 西北农业学报, 2010, 19(1):164-173. Su F L, Zhao H K, Guo C J, et al. Characters of sap flow of Populus×xiaozhuanica and its relations with environment factors[J]. Acta agriculturae boreali-occidentalis sinica, 2010, 19(1):164-173.
[28] 王华, 欧阳志云, 郑华, 等. 北京绿化树种油松、雪松和刺槐树干液流的空间变异特征[J]. 植物生态学报, 2010, 34(8):924-937. Wang H, Ouyang Z Y, Zheng H, et al. Characteristics of spatial variations in xylem sap flow in urban greening tree species Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia in Beijing, China[J]. Chinese journal of plant ecology, 2010, 34(8): 924-937.
[29] Fuentes S, Mahadevan M, Bonada M, et al. Night-time sap flow is parabolically linked to midday water potential for field-grown almond trees[J]. Irrigation science, 2013, 31(6):1265-1276.
[30] 陈立欣, 张志强, 李湛东, 等. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5):535-546. Chen L X, Zhang Z Q, Li Z D, et al. Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China[J]. Chinese journal of plant ecology, 2010, 34(5):535-546.
[31] 熊伟, 王彦辉, 徐德应. 宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J]. 林业科学, 2003, 39(2):1-7. Xiong W, Wang Y H, Xu D Y. Regulations of water use for transpirantion of Larix principis-rupprechtii plantation and its response on environmental factors in southern Ningxia Hilly Area[J]. Scientia silvae sinicae, 2003, 39(2):1-7.
[32] 刘鑫, 张金池, 汪春林, 等. 长三角地区典型树种杉木液流速率变化特征[J]. 南京林业大学学报(自然科学版), 2014, 38(2):86-92. Liu X, Zhang J C, Wang C L, et al. The variation characteristics of sap flow of Chinese fir in the Yangtze River Delta[J]. Journal of Nanjing Forestry University(natural sciences edition), 2014, 38(2): 86-92.
[33] Day T A, DeLucia E H, Smith W K. Effect of soil temperature on stem sap flow, shoot gas exchange and water potential of Picea engelmannii(Parry)during snowmelt[J]. Oecologia, 1990, 84(4): 474-481.
[34] 吴永波, 薛建辉. 岷江流域冷杉树干液流的动态变化规律[J]. 南京林业大学学报(自然科学版), 2005, 29(6):61-64. Wu Y B, Xue J H. The Dynamics ofstem sap slow of Abies fabric in Minjiang Valley[J]. Journal of Nanjing Forestry University(natural sciences edition), 2005, 29(6):61-64.

Last Update: 2016-02-25