我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

槲皮素作为荧光探针对醋酸根离子的识别作用(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年01期
Page:
80-86
Column:
研究论文
publishdate:
2016-01-31

Article Info:/Info

Title:
A natural quercetin-based fluorescent sensor for sensitive and selective detection of acetate ions
Article ID:
1000-2006(2016)01-0080-07
Author(s):
XU Yuanyuan14 YANG Shilong12 JIANG Weina12 ZHAO Fengyi14 YIN Bin4 XU Li134* GAO Buhong3 SUN Haijun3 DU Liting3 TANG Ying35 CAO
1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University;
2. College of Chemical Engineering, Nanjing Forestry University;
3. Advanced Analysis and Testing Center, Nanjing Forestry University;
4. College of Science, Nanjing Forestry University;
5. College of Forestry, Nanjing Forestry University, Nanjing 210037, China
Keywords:
quercetin fluorescent sensor acetate ions anions recognition
Classification number :
O657.3
DOI:
10.3969/j.issn.1000-2006.2016.01.013
Document Code:
A
Abstract:
A natural quercetin-based fluorescent sensor for sensitive and selective detection of acetate ions has been studied. Changes of fluorescence spectrum were studied before and after the addition of different anions in dimethyl sulfoxide(DMSO)solution of quercetin(Q), fluorescence emission intensity of Q increased obviously, acetate ions enhance fluorescence emission. And the fluorescence emission intensity had no change when adding other anions(Cl-,Br-,I-,ClO-4,H2PO-4). All suggested that the progress for detecting acetate ions will not be affected by other anions, and quercetin-based fluorescent sensor has good selectivity. The sensor Q can be applied to the quantification of acetate ions with a linear range of 1.0×10-6-8.0 × 10-6 mol/L and the detection limit of 1.0 × 10-7 mol/L. The stoichiometric ratio of Q and acetate ions was 3:2 obtained by Job's plot. The stability constant is 3.11×104. The 1H-NMR spectra of Q and Q-Ac- system showed a probable mechanism of quercetin recognition was that Ac- could destroy or weaken original hydrogen bonds, and promote charge transfer within quercetin molecule, which resulted in fluorescence intensity increasing. This method had been successfully applied in detecting acetate ions of samples in DMSO with good recovery(98.82%-100.96%)and repeatability.

References

[1] Manju S, Jose L, Gopal T K S, et al. Effects of sodium acetate dip treatment and vacuum-packaging on chemical, microbiological, textural and sensory changes of Pearlspot(Etroplus suratensis)during chill storage[J]. Food chemistry, 2007, 102(1): 27-35.Doi:10.1016/j.foodchem.2006.04.037.
[2] Sallam K I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon[J]. Food control, 2007, 18(5): 566-575.Doi: 10.1016/j.foodcont.2006.02.002.
[3] Silveira E L C, Caland L B D, Tubino M. Simultaneous quantitative analysis of the acetate, formate, chloride, phosphate and sulfate anions in bidiesel by ion chromatography[J]. Fuel, 2014, 124(10): 97-101.Doi: 10.1016/j.fuel.2014.01.095.
[4] Zhou L, Dovletoglou A. Practical capillary electrophoresis method for the quantitation of the acetate counter-ion in a novel antifungal lipopeptide[J]. J chromatogr A, 1997, 763(1-2): 279-284.Doi:10.1016/S0021-9673(96)00982-X.
[5] Feng M Y, Jiang X Z, Dong Z Y, et al. Selective recognition of acetate ion by perimidinium-based receptors[J]. Tetrahedron lett, 2012, 53(46): 6292-6296.Doi: 10.1016/j.tetlet.2012.09.037.
[6] Gupta V K, Singh A K, Gupta N. Colorimetric sensor for cyanide and acetate ion using novel biologically active hydrazones[J]. Sensor actua: B, 2014, 204: 125-135.Doi: 10.1016/j.snb.2014.07.029.
[7] Qi X, Jun E J, Xu L, et al. New bodipy derivatives as off-on fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement toward Cu2+[J]. J org chem, 2006, 71(7): 2881-2884.Doi: 10.1021/jo052542a.
[8] Qi X, Kim S K, Han S J, et al. New bodipy-triazine based tripod fluorescent systems[J]. Tetrahedron lett, 2008, 49(2): 261-264.Doi: 10.1016/j.tetlet.2007.11.063.
[9] Qi X, Kim S K, Jun E J, et al. A new bodipy derivative bearing piperazine group[J]. B kor chem soc, 2007, 28(12): 2231-2234.Doi: 10.1080/00032710701645828.
[10] Chen X W, Huang L L, Wang J H. Studies on the toluidine blue dimer as a fluorescence probe for protein assays[J]. Anal lett, 2007, 40(16-18): 3014-3024.Doi: 10.1016/j.talanta.2015.01.018.
[11] Chen Y B, Shi W, Hui Y H, et al. A new highly selective fluorescent turn-on chemosensor for cyanide anion[J]. Talanta, 2015, 137: 38-42.Doi: 10.1016/j.snb.2014.09.052.
[12] Chen Y H, Wang X, Yang X F, et al. Development of a ratiometric fluorescent probe for sulfite based on a coumarin-benzopyrylium platform[J]. Sensor actuat B:chem, 2015, 206(6): 268-275.Doi: 10.1080/00032711003698754.
[13] Ganjali M R, Faridbod F, Saboury A A, et al. Pico-level monitoring of ampicillin by using a novel cerium fluorescence probe[J]. Anal lett, 2010, 43(14): 2193-2199.Doi: 10.1016/j.molstruc.2013.04.077.
[14] Okudan A, Erdemir S, Kocyigit O. ‘Naked-eye' detection of fluoride and acetate anions by using simple and efficient urea and thiourea based colorimetric sensors[J]. J mol struct, 2013, 1048:392-398.Doi: 10.1016/j.jfluchem.2013.05.010.
[15] Reena V, Suganya S, Velmathi S. Synthesis and anion binding studies of azo-Schiff bases: Selective colorimetric fluoride and acetate ion sensors[J]. J of fluorine chem, 2013, 153(3): 89-95.Doi: 10.1002/bio.1354.
[16] Hosseini M, Ganjali M R, Veismohammadi B, et al. Selective recognition of acetate ion based on fluorescence enhancement chemosensor[J]. Luminescence, 2012, 27(5): 341-345.DOI: 10.1016/j.tetlet.2012.02.084.
[17] Kumar S, Singh P, Kumar S. 1-(2-Naphthalenyl)benzimidazolium based fluorescent probe for acetate ion in 90% aqueous buffer[J]. Tetrahedron lett, 2012, 53(17): 2248-2252.DOI: 10.1007/s10847-011-9995-5.
[18] Gong W T, Gao B, Bao S, et al. Selective “naked-eye” sensing of acetate ion based on conformational flexible amide-pyridinium receptor[J]. J Incl phenom macrocycl chem, 2012, 72(3-4):481-486.Doi: 10.1016/S0162-0134(00)00128-8.
[19] 张勇. 正交试验法优选槐花米中芸香苷水提取工艺[J]. 中国民族民间医药, 2013, 22(22): 10-11. Zhang Y. Optimization of water extraction process for rutin from Flos Sophoraes Immaturus by orthogonal design[J]. Chinese journal of ethnomedicine and ethnopharmacy, 2013, 22(22): 10-11.Doi:10.1155/2013/162750
[20] 王国霞, 曹福亮, 汪贵斌, 等. 不同地区银杏花粉黄酮和内酯含量的差异性[J]. 南京林业大学学报(自然科学版), 2007, 31(3): 34-38. Wang G X, Cao F L, Wang G B, et al. Comparative study on the contents of flavonoids and lactones in ginkgo pollen from different regions. Journal of Nanjing Forestry University(natural sciences edition), 2007, 31(3): 34-38.Doi: 10.1016/j.saa.2013.11.055.
[21] Zhou J, Wang L F, Wang J Y, et al. Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III)complexes[J]. J inorg biochem., 2001, 83(1): 41-48.Doi: 10.1002/bio.1128.
[22] Kumar S, Panaeag A K. Chemistry and biological activities of flavonoids: an overview[J]. The Scientific World Journal, 2013, 2013(4): 1-17.Doi: 10.1002/jssc.201301340.
[23] Liu P, Zhao L L, Wu X, et al. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application[J]. Spectrochimica acta part A: molecular and biomolecular spectroscopy, 2014, 122(6): 238-245.
[24] Liu Y, Wu X, Zhou H P, et al. The fluorescence enhancement of quercetin-nucleic acid system and the analytical application[J]. Luminescence, 2009, 24(6): 416-421.
[25] 谢宝东, 王华田. 光质和光照时间对银杏叶片黄酮、内酯含量的影响[J]. 南京林业大学学报(自然科学版), 2006, 30(2): 51-54. Xie B D, Wang H T. Effects of light spectrum and photoperiod on contents of flavonoid and terpene in leaves of Ginkgo biloba L.[J]. Journal of Nanjing Forestry University(natural sciences edition), 2006, 30(2): 51-54.
[26] Xie Z S, Sun Y J, Lam S C, et al. Extraction and isolation of flavonoid glycosides from Flos Sophorae Immaturus using ultrasonic-assisted extraction followed by high-speed countercurrent chromatography[J]. J sep sci, 2014, 37(8): 957-965.
[27] Antonio F, Raffaele R. Modification of Job's method for determining the stoichiometry of protein-protein complexes[J]. Anal biochem, 2013, 313(1): 170-172.Doi: 10.1016/S0003-2697(02)00562-6.
[28] Masoomeh S, Jamshid L M, Abolghasem J. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin-Ciocalteu spectrophotometric method[J]. Food Chem, 2008, 108(2): 695-701.Doi: 10.1016/j.foodchem.2007.11.008.
[29] Zeng Z Y, He Y B, Wu J L, et al. Synthesis of two branched fluorescent receptors and their binding properties for dicarboxylate anions[J]. Eur J Org Chem, 2004, 13:2888-2893.Doi: 10.1002/ejoc.200400014.
[30] Gu L Q, Wan X J, Liu H Y, et al. A novel ratiometric fluorescence sensor for Zn2+ detection[J]. Anal Methods, 2014,6(2): 8460-8463.Doi: 10.1039/c4ay01483a
[31] 曾振亚, 何永炳, 孟令芝. 阴离子荧光受体研究进展[J]. 化学进展, 2005, 17(2): 254-265. Zeng Z Y, He Y B, Meng L Z. Progress in fluorescent receptors for anions[J]. Prog Chem, 2005, 17(2): 254-265.
[32] 董智云, 江小枝, 薛芸蓉, 等. 含氮鎓阴离子受体的研究进展[J]. 高等学校化学学报, 2011, 32(9): 2032-2045. Dong Z Y, Jiang X Z, Xue Y R, et al. Imidazolium and pyridinium based receptors for anion recognition and sensing[J]. Chem J Chinese Universities, 2011, 32(9): 2032-2045.
[33] 江洪, 马续红, 方利, 等. N-硝基脲类的合成及其阴离子识别研究[J]. 无机化学学报, 2008, 24(7): 1073-1078. Jiang H, Ma X H, Fang L, et al. N-nitrourea derivatives: Synthesis and anion recognition properties[J]. Chinese J Inorg Chem, 2008, 24(7): 1073-1078.

Last Update: 2016-02-25