我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

显微技术在木质纤维素生物质预处理 研究中的应用进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年01期
Page:
155-161
Column:
综合述评
publishdate:
2016-01-31

Article Info:/Info

Title:
Application review of microscopic techniques on the investigation of lignocellulosic biomass pretreatment process
Article ID:
1000-2006(2016)01-0155-07
Author(s):
WANG YanJIN Yongcan*
Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
biomass pretreatment lignocellulose microscopy microspectroscopy cell wall microstructure
Classification number :
TQ353
DOI:
10.3969/j.issn.1000-2006.2016.01.025
Document Code:
A
Abstract:
The network structure which is formed by the components(cellulose, hemicellulose and lignin)of lignocellulosic biomass cell wall is believed to be the natural recalcitrance in the process of biomass conversion. A proper pretreatment is an efficient pathway to break this recalcitrance and enhance the conversion yield of enzymatic hydrolysis. Microscopic techniques including microscopy and microspectroscopy can be used to observe the microstructure of cell wall and analyze the change of component characteristics at multi-scales. The application of microscopic techniques, such as AFM, SEM, TEM and Raman microscopy on the process study of lignocellulosic biomass pretreatment, was briefly introduced in this review. The morphological change of cell wall surface and its effect on the enzymatic hydrolysis can be observed by microscopy technique. Microspectroscopy technique can be applied on in-situ analysis of component and ultrastructure changes of the cell wall during the pretreatment. The combination of multi-microscopic techniques covers the shortage of mono-technique, which can obtain the detail information on the biomass structure, as well as the content and distribution of cell wall components.

References

[1] GOMEZ L D, Steele-King C G, McQueen-Mason S J. Sustainable liquid biofuels from biomass: the writing's on the walls [J]. New phytologist, 2008, 178(3): 473-485.
[2] Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant cell walls [J]. Science, 2004, 306: 2206-2211.
[3] Lloyd T A, Wyman C E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids [J]. Bioresource technology, 2005, 96(18): 1967-1977.
[4] Zhu J Y, Pan X J, Wang G S, et al. Sulfite pretreatment(SPORL)for robust enzymatic saccharification of spruce and red pine [J]. Bioresource technology, 2009, 100(8): 2411-2418.
[5] Jin Y C, Jameel H, Chang H M, et al. Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill [J]. Journal of wood chemistry and technology, 2010, 30(1): 86-104.
[6] Lau M W, Dale B E, Balan V. Ethanolic fermentation of hydrolysates from ammonia fiber expansion(AFEX)treated corn stover and distillers grain without detoxification and external nutrient supplementation [J]. Biotechnology and bioengineering, 2008, 99(3): 529-539.
[7] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids [J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
[8] 刘君星,闫冬梅,周奎臣. 分子生物学仪器与实验技术 [M]. 哈尔滨:黑龙江科学技术出版社,2009.
[9] Lynd L R, Weimer P J, van Zyl W H, et al. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiology and molecular biology reviews, 2002, 66(3): 506-577.
[10] Liu H, Fu S Y, Zhu J Y, et al. Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging [J]. Enzyme and microbial technology, 2009, 45(4): 274-281.
[11] Greidinger D S, Bernstein H, Epstein S. Degraded cellulose and its manufacture: 3397198[P]. 1968-07-24.
[12] Zhang J H, Zhang B X, Zhang J Q, et al. Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose [J]. Biotechnology advances, 2010, 28(5): 613-619.
[13] Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813):804-807.
[14] Zhang M M, Chen G J, Kumar R, et al.Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging [J]. Biotechnology for biofuels, 2013, 6(1): 147.
[15] Abud Y, Costa L T, de Souza W, et al. Revealing the microfibrillar arrangement of the cell wall surface and the macromolecular effects of thermochemical pretreatment in sugarcane by atomic force microscopy [J]. Industrial crops and products, 2013, 51: 62-69.
[16] 张俐娜,薛奇,莫志深,等. 高分子物理近代研究方法 [M]. 武汉:武汉大学出版社,2003.
[17] Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids [J]. Cellulose, 2008, 15(1): 59-66.
[18] Yang F, Li L Z, Li Q, et al. Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification [J]. Carbohydrate polymers, 2010, 81(2): 311-316.
[19] Sun Y C, Xu J K, Xu F, et al. Structural comparison and enhanced enzymatic hydrolysis of eucalyptus cellulose via pretreatment with different ionic liquids and catalysts [J]. Process biochemistry, 2013, 48(5-6): 844-852.
[20] Bian J, Peng F, Peng X P, et al. Effect of [EMIM]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose[J]. Carbohydrate polymers, 2014, 100:211-217.
[21] Cui L H, Wang M, Li J H, et al. Effect of ionic liquid pretreatment on the structure and enzymatic saccharification of cassava stillage residues [J]. Advanced materials research, 2014, 884-885: 59-63.
[22] Satyanagalakshmi K, Sindhu R, Binod P, et al. Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation [J]. Journal of scientific & industrial research, 2011, 70(2):156-161.
[23] Singh R, Tiwari S, Srivastava M, et al. Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility [J]. Journal of energy, 2014, 2014: 1-7.
[24] Wang K, Jiang J X, Xu F, et al.Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks(Lespedeza crytobotrya)[J]. Bioresource technology, 2009, 100(21): 5288-5294.
[25] Sun F H, Li J, Yuan Y X, et al. Effect of biological pretreatment with Tramete shirsuta yj9 on enzymatic hydrolysis of corn stover [J]. International biodeterioration and biodegradation, 2011, 65(7): 931-938.
[26] Wang K, Yang H Y, Wang W, et al.Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar [J]. Biotechnology for Biofuels, 2013, 6(1): 1-9.
[27] Narayanaswamy N, Faik A, Goetz D J, et al. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production [J]. Bioresource technology, 2011, 102(13): 6995-7000.
[28] Yin J Z, Hao L D, Yu W, et al. Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment [J]. Chinese journal of catalysis, 2014, 35(5):763-769.
[29] Zhang H D, Wu S B. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse [J]. Bioresource technology, 2014, 158: 161-165.
[30] Zhang H D, Wu S B. Impact of liquid hot water pretreatment on the structural changes of sugarcane bagasse biomass for sugar production [J]. Applied mechanics and materials, 2014, 472: 774-779.
[31] Xiao X, Bian J, Li M F, et al. Enhanced enzymatic hydrolysis of bamboo(Dendrocalamus giganteus Munro)culm by hydrothermal pretreatment [J]. Bioresource technology, 2014, 159(15): 41-47.
[32] 康莲娣. 生物电子显微技术 [M]. 合肥:中国科学技术大学出版社,2003.
[33] Corrales R C, Mendes F M, Perrone C C, et al.Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2 [J]. Biotechnology for biofuels, 2012, 5: 36.
[34] Donohoe B S, Decker S R, Tucker M P, et al. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment [J]. Biotechnology and bioengineering, 2008, 101(5): 913-925.
[35] Donohoe B S, Vinzant T B, Elander R T, et al.Surface and ultrastructural characterization of raw and pretreated switchgrass [J]. Bioresource technology, 2011, 102(24): 11097-11104.
[36] Li X P, Luo X L, Li K C, et al. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine [J]. Applied biochemistry and biotechnology, 2012, 168(6): 1556-1567.
[37] 田国辉, 陈亚杰, 冯清茂. 拉曼光谱的发展及应用 [J]. 化学工程师, 2008,22(1): 34-37.
[38] Fischer S, Schrnzel K, Fischer K, et al.Applications of FT-Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials [J]. Macromolecular symposia, 2005, 22(1): 41-56.
[39] Chu L Q, Masyuko R, Sweedler J V, et al. Base-induced delignification of Miscanthus×giganteus studied by three-dimensional confocal Raman imaging [J]. Bioresource technology, 2010, 101(13): 4919-4925.
[40] Lucas M, Wagner G L, Nishiyama Y, et al. Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature [J]. Bioresource technology, 2011, 102(6): 4518-4523.
[41] Lucas M, Hanson S K, Wagner G L, et al. Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst [J]. Bioresource technology, 2012, 119: 174-180.
[42] Li C L, Sun L, Simmons B A, et al. Comparingthe recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatments [J]. BioEnergy research, 2013, 6(1): 14-23.
[43] Ji Z, Ma J F, Xu F. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment [J]. Microscopy and microanalysis, 2014, 20(2): 566-576.
[44] Zhang X, Ma J, Ji Z, et al.Using confocal Raman microscopy to real-time monitor poplar cell wall swelling and dissolution during ionic liquid pretreatment [J]. Microscopy research and technique, 2014, 77(8): 609-618.
[45] Messerschmidt R G, Morthcock M A. Infrared microspectroscopy-theory and application [M]. New York: Mared Dekker, 1988.
[46] Lehringer C, Koch G, Adusumalli R B, et al.Effect of physisporinus on wood properties of Norway spruce. Part 1: aspects of delignification and surface hardness [J]. Holzforschung, 2011, 65(5): 711-719.
[47] Eronen P, Österberg M, Jääskeläinen A S. Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy [J]. Cellulose, 2009, 16(2): 167-178.
[48] Li C L, Knierim B, Manisseri C, et al.Comparison of dilute acid and ionic liquid pretreatment of switchgrass biomass recalcitrance, delignification and enzymatic saccharification [J]. Bioresource technology, 2010, 101(13): 4900-4906.
[49] Lucas M, Macdonald B A, Wagner G L, et al. Ionic liquid pretreatment of poplar wood at room temperature swelling and incorporation of nanoparticles [J]. ACS applied materials and interfaces, 2010, 2(8): 2198-2205.
[50] Sun L, Li C L, Xue Z J, et al. Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment [J]. RSC advances, 2013, 3(6): 2017-2027.
[51] Chundawat S P S, Donohoe B S Sousa L C, et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment [J]. Energy and environmental science, 2011, 4(3): 973-984.
[52] Chandel A K, Antunes F F A, Anjos V, et al. Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion(OAFEX)and ethanol production by Candida shehatae and Saccharomyces cerevisiae [J]. Biotechnology for biofuels, 2013, 6(1): 1-15.
[53] Chandel A K, Antunes F F A, Anjos V, et al. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae [J]. Biotechnology for biofuels, 2014, 7(1): 63-79.
[54] Reza M, Rojas L G, Kontturi E, et al.Accessibility of cell wall lignin in solvent extraction of ultrathin spruce wood sections [J]. ACS sustainable chemistry & engineering, 2014, 2(4): 804-808.
[55] Ding S Y, Liu Y S, Zeng Y N, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility [J]. Science, 2012, 338(6110): 1055-1060.

Last Update: 2016-02-25