我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

集约经营模式下毛竹的空间分布格局(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年01期
Page:
162-168
Column:
研究简报
publishdate:
2016-01-31

Article Info:/Info

Title:
Spatial distribution pattern of Phyllostachys edulis under the pattern of intensive farming
Article ID:
1000-2006(2016)01-0162-07
Author(s):
GU Qi CHEN Shuangshuang PENG Yue HUANG Weiliang WANG Shucong QIN Peng HONG WeiWANG Fusheng*
Co-Innovation Center for the Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
Keywords:
intensive farming pattern moso bamboo spatial point pattern GAM inhomogeneous environment K function
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.2016.01.026
Document Code:
A
Abstract:
The spatial distribution pattern of moso bamboo(Phyllostachys edulis)is generally limited by environmental conditions and self-thinning rule by itself. In order to understand the influences of the environment conditions and self-thinning rule on spatial distribution pattern, population dynamics, the productivity and quality of moso bamboo under the pattern of intensive farming, we sampled a 40 m×15.5 m plot on a mountain of Yongan City, Fujian Province, which was reckoned as a representative moso bamboo forest, used the heterogeneous spatial point pattern analysis method to check the distributional type of new moso bamboos in 2014 relative to old moso bamboos in 2008, 2010 and 2012, measured the spatial locations and the diameters at breast height(DBH)of moso bamboos, meanwhile used the generalized additive model(GAM)to check whether there was a relationship between the DBH of moso bamboos and the corresponding spatial locations. The results showed that the spatial distribution type of moso bamboo was random in a particular distance scale, and the DBH was significantly affected by the spatial locations of moso bamboo, which meant that the distributing environment of moso bamboo were heterogeneous. The biomasses of moso bamboo were related to environmental conditions, which implicated that it is important to improve the soil conditions and choose the plantation of moso bamboo for enhancing the productivity of moso bamboo and the quality of bamboo shoots. Thus, to use the inhomogeneous spatial point pattern analysis method is reasonable. The present study is of theoretical value for exploring the spatial distribution rule of moso bamboos, and it is also of practical value for operating moso bamboo forests.

References

[1] 程小飞. 上阔下竹复合生态系统类型划分的研究 [D]. 南京:南京林业大学, 2015:22. Cheng X F. Type classification of the broad-leaved forest in upper slope and bamboo plantation in lower slope compound ecosystem [D]. Nanjing:Nanjing Forestry University, 2015:22.
[2] Cheng X F, Shi P J, Hui C, et al. An optimal proportion of mixing broad-leaved forest for enhancing the effective productivity of moso bamboo [J]. Ecology and evolution, 2015, 5(8): 1576-1584.
[3] 时培建, 郭世权, 杨清培, 等. 毛竹的异质性空间点格局分析 [J]. 生态学报, 2010, 30(16): 4401-4407. Shi P J, Guo S Q, Yang Q P, et al. Inhomogeneous spatial point pattern analysis of moso bamboo(Phyllostachys edulis)[J]. Acta ecological sinica, 2010, 30(16): 4401-4407.
[4] Gatrell A C, Bailey T C, Diggle P J, et al. Spatial point pattern analysis and its application in geographical epidemiology [J]. Transactions of the institute of British geographers, 1996, 21(1): 256-274.
[5] Diggle P J. Statistical Analysis of spatial and spatio-temporal point patterns[M]. 3rd ed. London: Chapman & Hall/CRC, 2013:2.
[6] Diggle P J, Chetwynd A G. Second-order analysis of spatial clustering for inhomogeneous populations [J]. Biometrics, 1991, 47(3): 1155-1163.
[7] Silverman B W. Density estimation for statistics and data analysis [M]. London: Chapman & Hall/CRC, 1986.
[8] Nelder J, Wedderburn R W M. Generalized linear models [J]. Journal of the royal statistical society: series A, 1972, 135(3): 370-384.
[9] Hastie T, Tibshirani R. Generalized additive models(with discussion)[J]. Statistical science, 1986, 1(3): 297-318.
[10] Hastie T, Tibshirani R. Generalized additive models [M]. London: Chapman & Hall/CRC, 1990.
[11] Bailey T C, Gatrell A C.Interactive spatial data analysis [M]. New York: Longmam scientific & technical, 1995:2.
[12] Baddeley A J, Mller J, Waagepetersen R. Non-and semi-parametric estimation of interaction in inhomogeneous point patterns [J]. Statistica neerlandica, 2000, 54(3): 329-350.
[13] Guisan A, Edwards T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions:setting the scene [J]. Ecological modelling, 2002, 157(2): 89-100.
[14] 姜汉桥,段昌群,杨树华,等.植物生态系[M].2版.北京:高等教育出版社,2010:2.
[15] 张金屯. 植物种群空间分布的点格局分析 [J]. 植物生态学报, 1998, 22(4): 344-349. Zhang J T. Analysis of spatial point pattern for plant species [J]. Acta phytoecologica sinica, 1998, 22(4): 344-349.
[16] 张金屯, 孟东平. 芦芽山华北落叶松林不同龄级立木的点格局分析 [J]. 生态学报, 2004, 24(1): 35-40. Zhang J T. Meng D P. Spatial pattern analysis of individuals in different age-classes of Larixprincipis-rupprechtii in Luya Mountain reserve, Shanxi, China [J]. Acta ecological sinica, 2004, 24(1): 35-40.
[17] Smith P G. Quantitative plant ecology [M]. 3rd ed.Oxford: Blackwell scientific publications, 1983.
[18] 刘淑燕, 岳永杰, 余新晓, 等. 北京山区刺槐林种群的空间点格局 [J]. 东北林业大学学报, 2010, 38(4): 33-36. Liu S Y, Yue Y J, Yu X X, et al. Spatial pattern of Robinia pseudoacacia plantation population in mountatinous area of Beijing [J]. Journal of Northeast Forestry University, 2010, 38(4): 33-36.
[19] 杨洪晓, 张金屯, 吴波, 等. 毛乌肃沙地油蒿种群点格局分析 [J]. 植物生态学报, 2006, 30(4): 563-570. Yang H B, Zhang J T, Wu B, et al. Point pattern analysis of Artemisia ordosica population in the Mu Us sandy land [J]. Journal of plant ecology, 2006, 30(4): 563-570.
[20] 刘振国, 李镇清. 不同放牧强度下冷蒿种群小尺度空间格局 [J]. 生态学报, 2004, 24(2): 227-234. Liu Z G, Li Z Q. Fine-scale spatial pattern of Artemisia frigida population under different grazing intensities [J]. Acta ecological sinica, 2004, 24(2): 227-234.
[21] 刘佳佳. 青藏高原高寒草甸草本植物的空间格局及其形成机制 [D]. 兰州:兰州大学, 2012:33-36. Liu J J. Spatial distribution patterns and the underlying mechanisms of the alpine meadow vegetation in Tibetan Plateau [D]. Lanzhou:Lanzhou University, 2012:33-36.
[22] 兰思仁. 武夷山天然毛竹林分布格局的研究 [J]. 福建林学院学报, 1995, 15(3): 277-280. Lan S R. The study of natural moso bamboo forest distribution pattern in Wuyi Mountain [J]. Journal of Fujian College of Forestry, 1995, 15(3): 277-280.
[23] 董文渊, 郑进烜, 陈冲. 海子坪天然毛竹无性系种群分布格局研究 [J]. 西北林学院学报, 2010, 25(1): 30-34. Dong W Y, Zheng J X, Chen C. Distribution pattern of natural Phyllostachy spubescens population in Haiziping [J]. Journal of Northwest Forestry University, 2010, 25(1): 30-34.
[24] Martíne Z I, Wiegand T, González-Taboada F, et al. Spatial associations among tree species in a temperate forest community in north-western Spain [J]. Forest ecology and management, 2010, 260(4): 456-465.
[24] Shi P J, Xu Q, Soudu H S, et al. Comparison of duarf bamboos(Indocalamus sp.)leaf parameters to determine relationship between spatial density of plants and total leaf area per plant[J]. Ecology and evolution,2015,5(20):4578-4589.
[25] 朱强根, 金爱武, 娄艳华, 等. 毛竹种群空间格局及分株间关联性—重复空间点格局分析 [J]. 世界竹藤通讯, 2014, 12(5): 1-7. Zhu Q G, Jin A W, Lou Y H, et al. Association between spatial patterns and ramets of Phyllostachy sheterocycla cv. Pubescens population using replicated spatial point patterns [J]. World bamboo and rattan, 2014, 12(5): 1-7.
[26] 洪伟, 郑康宏, 龚其锦. 毛竹在杉木与毛竹混交林中的空间分布型的研究 [J]. 竹子研究汇刊, 1990, 9(2): 56-64. Hong W, Zheng K H, Gong Q J. A study on the distribution pattern bamboo in the mixed forest of Chinese fir-bamboo [J]. Journal of bamboo research, 1990, 9(2): 56-64.
[27] 王微, 胡凯, 吴东琴, 等. 重庆地区毛竹分株种群结构特征研究 [J]. 竹子研究汇刊, 2008, 27(2): 17-19. Wang W, Hu K, Wu D Q, et al. Studies on the ramet population structure of the clonal moso bamboo in Chongqing [J]. Journal of bamboo research, 2008, 27(2): 17-19.
[28] 曹铭昌, 周广胜, 翁恩生. 广义模型及分类回归树在物种分布模拟中的应用和比较 [J]. 生态学报, 2005, 25(8): 2031-2040. Cao M C, Zhou G S, Weng E S. Application and comparison of generalized models and classification and regression tree in simulating tree species distribution [J].Acta ecological sinica, 2005, 25(8): 2031-2040.
[29] 朱源, 康幕谊. 排序和广义线性模型和广义可加模型在植物种与环境关系研究中的应用 [J]. 生态学杂志, 2005, 24(7): 807-811. Zhu Y, Kang M Y. Application of ordination and GLM/GAM in the research of the relationship between plant species and environment [J]. Chinese journal of ecology, 2005, 24(7): 807-811.
[30] 温仲明, 赫晓慧, 焦芳, 等. 延河流域本氏针茅(Stipabungeana)分布预测——广义相加模型及其应用 [J]. 生态学报, 2008, 28(1): 192-201. Wen Z M, He X H, Jiao F, et al. The predictive distribution of Stipabungeana in Yanhe River catchment: GAM model and its application [J]. Acta ecological sinica, 2008, 28(1): 192-201.
[31] 余黎, 雷相东, 王雅志. 基于广义可加模型的气候对单木胸径生长的影响研究 [J]. 北京林业大学学报, 2014, 36(5): 22-32. Yu L, Lei X D, Wang Y Z. Impact of climate on individual tree radial growth based on generalized additive model [J]. Journal of Beijing Forestry University,2014, 36(5): 22-32.
[32] 牛明香, 李显森, 须玉成. 基于广义可加模型的时空和环境因子对东南太平洋智利竹筴鱼渔场的影响 [J]. 应用生态学报, 2010, 21(4): 1049-1055. Niu M X, Li X S, Xu Y C. Effects of spatiotemporal and environment factors on the fishing ground of Trachurusmur-phyi in Southeast Pacific Ocean based on generalized additive model [J]. Chinese journal of applied ecology, 2010, 21(4): 1049-1055.

Last Update: 2016-02-25