我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

纳米纤维素丙烯腈-丁二烯-苯乙烯复合材料的特性(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年01期
Page:
179-182
Column:
研究简报
publishdate:
2016-01-31

Article Info:/Info

Title:
Study on the properties of ABS composites reinforced with cellulose nanocrystal
Article ID:
1000-2006(2016)01-0179-04
Author(s):
MA Libo12 YANG Xiaolin2 WANG Siqun3ZHANG Yang1*
1. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
2. Changzhou Institute of Engineering Technology, Changzhou 213164, China;
3. Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA
Keywords:
cellulose nanocrystal(CNC) ABS composites compatibility
Classification number :
TQ333.7
DOI:
10.3969/j.issn.1000-2006.2016.01.029
Document Code:
A
Abstract:
To overcome the disadvantages of dispersion difficulty, thermal degradation and poor compatibility with matrix of cellulose nanocrystal(CNC)in the non-hydrophilic resin application, freeze-dried CNCs were first coated with polymer in organic solution, and then melt blended with acrylonitrile-butadiene-styrene(ABS)and PE-g-MAH to prepare the composites. SEM images demonstrated that CNCs can disperse homogeneously in the ABS matrix in the form of nanosheet. Tensile tests revealed that grafted polyethylene was critical to increase the compatibility of CNC with the matrix, and the tensile strength and modulus increased by 15.6% and 52%, respectively, with a CNC content of 0.7%. TGA test indicated that the thermal decomposition temperature of CNC increased from 211 ℃ to 263 ℃, which improved the temperature adaptability of CNC in the process of polymer processing.

References

[1] Sakurada I, Nukushina Y, Ito T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers[J]. Journal of polymer science, 1962, 57(165): 651-660.
[2] Frone A N, Panaitescu D M, Donescu D, et al. Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication[J]. BioResources, 2011, 6(1): 487-512.
[3] Wang S, Cheng Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization[J]. Journal of applied polymer science, 2009, 113(2): 1270-1275.
[4] Biyani M V, Foster E J, Weder C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS macro letters, 2013, 2(3): 236-240.
[5] Cheng Q, Wang S, Rials T G. Poly(vinyl alcohol)nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites part A: applied science and manufacturing, 2009, 40(2): 218-224.
[6] Shin Y J, Ham Y R, Kim S H, et al. Application of cyclophosphazene derivatives as flame retardants for ABS[J]. Journal of industrial and engineering chemistry, 2010, 16(3): 364-367.
[7] Hsieh Y L. Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective[J]. Journal of materials science, 2013, 48(22): 7837-7846.
[8] Peng Y, Gardner D J, Han Y. Drying cellulose nanofibrils: in search of a suitable method[J]. Cellulose, 2012, 19(1): 91-102.
[9] Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose[J]. Biomacromolecules, 2007, 9(1): 57-65.
[10] Han J, Zhou C, Wu Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying: Effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5): 1529-1540.
[11] Cho S Y, Yun Y S, Jin H J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals[J]. Macromolecular research, 2014, 22(7): 753-756.
[12] 杨雪慧,汤丽娟,章蓉,等. 农作物秸秆表面改性处理的研究进展[J]. 南京林业大学学报(自然科学版),2013, 37(3):157-162. Yang X H, Tang L J, Zhang R, et al. Review on progress of crop straws surface modification[J]. Journal of Nanjing Forestry University(natural sciences edition),2013,36(3): 157-162.
[13] 何文,阮氏香江,蒋身学,等. 偶联剂对HDPE基竹塑复合材料性能的影响[J]. 南京林业大学学报(自然科学版),2014, 38(6):110-114. He W, Nguyen T H G, Jiang S X, et al. Effect of MAH-g-PP on properties of bamboo flour(BF)/highdensity polyethylene(HDPE)composites[J]. Journal of Nanjing Forestry University(natural sciences edition),2014,38(6): 110-114.
[14] 黄润州,WU Q L,张洋. 偶联剂对木塑复合材料冲击强度与热膨胀性能的影响[J]. 南京林业大学学报(自然科学版),2012, 36(3):91-95. Huang R Z,Wu Q L,Zhang Y. Effects of coupling agent treatment on impact strength and thermal expansion performance of wood plastic composite[J]. Journal of Nanjing Forestry University(natural sciences edition),2012,36(3):91-95.
[15] Adam C, Lacoste J, Lemaire J. Photo-oxidation of elastomeric materials: Part 3—Photo-oxidation of acrylonitrile-butadiene copolymer[J]. Polymer degradation and stability, 1990, 27(1): 85-97.
[16] Gong G, Pyo J, Mathew A P, et al. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced(CNF)polyvinyl acetate(PVAc)[J]. Composites part A: applied science and manufacturing, 2011, 42(9): 1275-1282.
[17] Corrêa A C, de Morais Teixeira E, Pessan L A, et al. Cellulose nanofibers from curaua fibers[J]. Cellulose, 2010, 17(6): 1183-1192.

Last Update: 2016-02-25