我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

樟子松木材横纹压缩时黏弹性与能量吸收特性研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年02期
Page:
127-131
Column:
研究论文
publishdate:
2016-03-30

Article Info:/Info

Title:
Viscoelastic and energy absorption characteristics of scotch pine wood in across-compression
Article ID:
1000-2006(2016)02-0127-05
Author(s):
XU Zhaoyang LI Jianyu ZHAI Shengcheng XU Deliang
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
across-compression viscoelastic energy absorption creep cushioning coefficient scotch pine
Classification number :
S781.2
DOI:
10.3969/j.issn.1000-2006.2016.02.021
Document Code:
A
Abstract:
This paper investigated the relationship between viscoelasticity and energy absorption characteristics of scotch pine wood by across-compression creep tests. The results showed that the stress-strain curve occupied three typical regions when scotch pine was across compressed with load in radial direction. The second region in the stree-strain curve, a plateau, embodied good characteristics of energy absorption. A four-elements model could be used to study the creep performance of scotch pine in short term. When the stress increased, the instantaneous elastic modulus, delayed elastic modulus and glutinous coefficient of the Kelvin model all increased. On the contrary, the glutinous coefficient of the Maxwell model and relaxation time decreased with increasing stress level. In creep test, when the stress levels increased, the energy absorption ability of scotch pine increased correspondingly, but the cushioning coefficient decreased.

References

[1] 孙小燕, 汪江节, 王鹏. 泡沫金属孔结构对其力学性能的影响[J]. 安庆师范学院学报(自然科学版), 2006, 12(4):47-49. Doi:10.3969/j.issn.1007-4260.2006.04.017. Sun X Y, Wang J J, Wang P. Effect of cellular metallic materials on mechanical property[J]. Journal of Anqing Teachers College(Natural Science Edition), 2006, 12(4):47-49.
[2] 李宇燕, 黄协清, 树学锋. 泡沫铝硅材料静动态压缩特性试验研究[J]. 机械工程材料, 2004, 28(10):38-40. Doi:10.3969/j.issn.1000-3738.2004.10.013. Li Y Y, Huang X Q, Shu X F. Static and dynamic characteristics of foamed al-si[J]. Materials for Mechanical Engineering, 2004, 28(10):38-40.
[3] Ando Kosei, Onda Hitoshi. Mechanism for deformation of wood as a honeycomb structure i: effect of anatomy on the initial deformation process during radial compression[J]. J Wood Sci, 1999, 45(2): 120-126. Doi:10.1007/BF01192328.
[4] Tagarielli V L, Deshpande V S, Fleck N A. The high strain rate response of PVC foams and end-grain balsa wood[J]. Composites: Part B, 2008, 39: 83-91.Doi: 10.1016/j.compositesb.2007.02.005.
[5] Salimon A,Bréchet Y, Ashby M F, et al. Potential applications for steel and titanium metal foams[J]. Mechanical Behavior of Cellular Solids, 2005: 5793-5791.Doi: 10.1007/s10853-005-4993-x.
[6] Makaki A E, Clyne T W. The effect of cell wall microstructure on the deformation and fracture of aluminium based foams[J]. Acta Mater, 2001, 49: 1677-1686.Doi: 10.1016/S1359-6454(01)00072-6.
[7] Yang M Y, Huang J S. Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression[J]. Composite Structures, 2005, 71(2): 229-237.Doi: 10.1016/j.compstruct.2004.10.014.
[8] Liu Z F, Hao W Q, Xie J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns[J]. Composites Part B: Engineering, 2015,94:410-423.Doi:10.1016/j.tws.2015.05.002.
[9] 赵钟声, 崔永志, 于海鹏,等. 木材薄板横纹压缩强化的微观结构变化[J]. 林业科学, 2010, 46(11): 124-130. Zhao Z S, Cui Y Z, Yu H P, et al. Micro-structure examination of strengthened wood sheets by compression perpendicular to grain[J]. Scientia Silvae Sinicae, 2010, 46(11): 124-130.
[10] 赵钟声, 崔永志, 于海鹏, 等. 木材薄板横纹压缩强化的微观结构变化[J]. 林业科学, 2010, 46(11):124-130. Zhao Z S, Cui Y Z, Yu H P, et al. Micro-structure examination of strengthened wood sheets by compression perpendicular to grain[J]. Scientia Silvae Sinicae, 2010, 46(11):124-130.
[11] 陶俊林, 余作生, 蒋平. 木材静压大变形本构关系研究[J]. 力学与实践, 2000, 22(5):25-27.Doi:10.3969/j.issn.1000-0879.2000.05.7. Tao J L, Yu Z S, Jiang P. On the static constitutive relation of wood with large deformation[J].Mechanics in Engineering, 2000, 22(5):25-27.
[12] 钟卫洲, 宋顺成, 黄西成,等. 三种加载方向下云杉静动态力学性能研究[J]. 力学学报, 2011, 43(6):1141-1150. Zhong W Z, Song S C, Huang X C, et al. Research on static and dynamic mechanical properties of spruce wood by thress loading directions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1141-1150.
[13] 刘云川, 窦金龙, 汪旭光. 冲击压缩载荷作用下杨木的力学性能研究[J]. 振动与冲击, 2009, 28(4):93-96. Doi:10.3969/j.issn.1000-3835.2009.04.021. Liu Y C, Dou J L, Wang X G. Response of a chinese white poplar under impact compressive load: experiment and analysis[J]. Journal of Vibration and Shock, 2009, 28(4):93-96.
[14] Miksic A, Myntti M, Koivisto J, et al. Effect of fatigue and annual rings' orientation on mechanical properties of wood under cross-grain uniaxial compression[J]. Wood Science and Technology, 2013, 47(6):1117-1133.Doi: 10.1007/s00226-013-0561-8.
[15] 赵钟声. 木材横纹压缩变形恢复率的变化规律与影响机制[D].哈尔滨:东北林业大学, 2003. Zhao Z S.The law and effective factors of resiliency ratio of wood compressive deformation in the transverse direction[D]. Harbin: Northeast Forestry University, 2003.
[16] Basta Craig Thomas, Gupta Rakesh, Leichti Robert, et al. Characterizing perpendicular-to-grain compression(C-perpendicular to)behavior in wood construction[J]. Holzforschung, 2011, 65(6):845-853.Doi: 10.1515/HF.2011.104.
[17] Craig T Basta, Rakesh Gupta, Robert J, et al. Applications of perpendicular-to-grain compression behavior in real wood construction assemblies[J]. Wood and Fiber Science, 2012, 44(2):155-167.
[18] Aimene Y E, Nairn J A. Simulation of transverse wood compression using a large-deformation,hyperelastic-plastic material model[J]. Wood Science and Technology, 2015, 49(1):21-39.Doi: 10.1007/s00226-014-0676-6.
[19] 国家技术监督局. GB/T 1939—2009木材横纹抗压试验方法[S]. 北京:中国标准出版社,1991.
[20]尹思慈. 木材学[M]. 北京: 中国林业出版社, 1996:170.
[21] 王保升, 张丽. 二次加载时蜂窝纸板的缓冲性能研究[J]. 包装工程, 2011, 32(15): 62-65. Wang B S, Zhang L. Research on cushioning performance of honeycomb paperboard under the second Load[J]. Packaging Engineering, 2011, 32(15): 62-65.
[22] Schiffmann K I. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models[J]. International Journal of Materials Research,2006,97(9):1199-1211.
[23] 涂道伍, 邵卓平. 基于Burger体的竹材横纹热压流变模型[J]. 南京林业大学学报(自然科学版), 2008, 32(2):67-70. Doi:10.3969/j.issn.1000-2006.2008.02.015. Tu D W, Shao Z P. Rheology model of bamboo under transverse heat-compression based on burger-body[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(2):67-70.
[24] 闫薇, 崔海星, 朱一辛. 竹材的拉伸短期蠕变行为及模拟[J]. 林业科技开发, 2013, 27(3):46-49.Doi:10.3969/j.issn.1000-8101.2013.03.012. Yan W, Cui H X, Zhu Y X. Analysis and simulation of moso bamboo short-term tensile creep behaviour[J].China Forestry Science and Technology, 2013, 27(3):46-49.
[25] 刘乘,吴莎. 测试缓冲材料性能的方法及其分析[J]. 包装工程, 2011, 32(13): 25-25. Liu C, Wu S. Cushioning material properties testing methods and analysis[J]. Packaging Engineering, 2011, 32(13): 25-25.

Last Update: 2016-04-01