我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

雷竹SOC1蛋白原核表达及纯化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年03期
Page:
41-46
Column:
研究论文
publishdate:
2016-05-18

Article Info:/Info

Title:
Expression and purification of Phyllostachys violascens SOC1 protein in prokaryotic system
Article ID:
1000-2006(2016)03-0041-06
Author(s):
TANG YegenSHI Quan LIN Xinchun XU Yingwu*
The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
Keywords:
Phyllostachys violascens SOC1 protein prokaryotic system protein purification
Classification number :
Q518.2
DOI:
10.3969/j.issn.1000-2006.2016.03.007
Document Code:
A
Abstract:
In order to obtain soluble recombinant PvSOC1(Phyllostachys violascens SUPPERSSOR OF CO OVEREXPRESSION 1)protein in vitro. We used pET-GST as expression vector, to over-express full-length and IKC structural domain of PvSOC1 in E.coli Rosetta prokaryotic system. We found the optimal expression strategy is when the suspension culture's OD600 value reaches 0.4-0.6, add IPTG and keep it's concentration at 0.4 mmol/L. Kept incubating for 5 h at the temperature of 37℃ to induce the protein.We found IKC domain is soluble,to compare with the fullength sequence,it started from No.62 amino acid and ends at No.225. Added TEV(tobacco etch virus protease)protease to remove GST tag.Combined glutathione sepharose resin with size exclusion chromatography(SEC)to get highly purified IKC domain of PvSOC1.And chromatography data proof this domain exists as a octamer.

References

[1] Nakamura T, Song I J, Fukuda T, et al. Characterization of TrcMADS1 gene of Trillium camtschatcense(Trilliaceae)reveals functional evolution of the SOC1/TM3-like gene family[J]. J Plant Res, 2005, 118(3):229-234. Doi:10.1007/s10265-005-0215-5.
[2] Simpson G G, Dean C. Arabidopsis, the rosetta stone of flowering time[J]. Science, 2002, 296(5566):285-289. Doi:10.1126/science.296.5566.285.
[3] Lee H. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 2000, 14(18):2366-2376. Doi:10.1101/gad.813600.
[4] Samach A, Onouchi H, Gold S E, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(5471):1613-1616.
[5] Gu Q, Ferrándiz C, Yanofsky M F, et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J]. Development, 1998, 125(8):1509-1517.
[6] Onouchi H, Igeño M I, Périlleux C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. Plant Cell, 2000, 12(6):885-900.
[7] Melzer S,Lens F, Gennen J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana[J]. Nature Genetics, 2008, 40(12):1489-1492. Doi:10.1038/ng.253
[8] Hepworth S R, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO J, 2002, 21(16):4327-4337.
[9] Michaels S D. Integration offlowering signals in winter-annual Arabidopsis[J]. Plant Physiology, 2005, 137(1):149-156. Doi:10.1104/pp.104.052811.
[10] Moon J, Lee H, Kim M, et al. Analysis of flowering pathway integrators in Arabidopsis[J]. Plant Cell Physiol, 2005, 46(2):292-299. Doi:10.1093/pcp/pci024.
[11] Yoo S K, Chung K S, Kim J, et al. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiol, 2005, 139(2):770-778. Doi:10.1104/pp.105.066928.
[12] Schwarz-Sommer Z, Huijser P, Nacken W, et al. Genetic control of flower development by homeotic genes in Antirrhinum majus[J]. Science, 1990, 250(4983):931-936. Doi:10.1126/science.250.4983.931.
[13] Borner R, Kampmann G, Chandler J, et al. A MADS domain gene involved in the transition to flowering in Arabidopsis[J]. Plant J, 2000, 24(5):591-599.
[14] Michaels S D, Amasino R M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J]. Plant Cell, 2001, 13(4):935-941.
[15] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2):183-198. Doi:10.1016/j.gene.2004.12.014.
[16] Smaczniak C,Immink R G H, Muino J M, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Proceedings of the National Academy of Sciences, 2012, 109(5):1560-1565. Doi:10.1073/pnas.1112871109.
[17] Krizek B A, Meyerowitz E M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins[J]. Proc Natl Acad Sci USA, 1996, 93(9):4063-4070.
[18] 周佳平, 林新春, 徐英武. 拟南芥SEPALLATA3蛋白质原核表达与纯化[J]. 浙江农林大学学报, 2014, 31(1):14-18. Doi:10.11833/j.issn.2095-0756.2014.01.003. Zhou J P, Lin X C, Xu Y W. Arabidopsis thaliana sepallata 3 protein in a prokaryotic system[J]. Journal of Zhejiang A & F University, 2014, 31(1):14-18.
[19] 马腾飞, 林新春. 植物SOC1/AGL20基因研究进展[J]. 浙江农林大学学报, 2013, 30(6):930-937. Ma T F, Lin X C. Advanced research on SOC1/AGL20 genes in plants: a review[J]. Journal of Zhejiang A & F University, 2013, 30(6):930-937.
[20] Corbesier L, Coupland G. The quest for florigen: a review of recent progress[J]. J Exp Bot, 2006, 57(13):3395-3403. Doi:10.1093/jxb/erl095.
[21] Lee J, Oh M, Park H,et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy[J]. Plant J, 2008, 55(5):832-843. Doi:10.1111/j.1365-313X.2008.03552.x.
[22] Lee S, Kim J, Han J J,et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20)ortholog in rice[J]. Plant J, 2004, 38(5):754-764. Doi:10.1111/j.1365-313X.2004.02082.x.
[23] Melzer R, WangY Q, Theissen G. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower[J]. Semin Cell Dev Biol, 2010, 21(1):118-128. Doi:10.1016/j.semcdb.2009.11.015.
[24] Pollock R, Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets[J]. Genes Dev, 1991, 5(12A):2327-2341.
[25] Huang H, Tudor M, Su T,et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation[J]. Plant Cell, 1996, 8(1):81-94. Doi:10.1105/tpc.8.1.81.
[26] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409(6819):525-529. Doi:10.1038/35054083.
[27] Vandenbussche M. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic Acids Research, 2003, 31(15):4401-4409. Doi:10.1093/nar/gkg642.
[28] Fan H Y, Hu Y, Tudor M, et al. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins[J]. Plant J, 1997, 12(5):999-1010.
[29] Pelaz S,Gustafson-Brown C, Kohalmi S E, et al. APETALA1 and SEPALLATA3 interact to promote flower development[J]. Plant J, 2001, 26(4):385-394.
[30] Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS[J]. Proc Natl Acad Sci USA, 1996, 93(10):4793-4798.
[31] Adamczyk B J, Fernandez D E. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis[J]. Plant Physiol, 2009, 149(4):1713-1723. Doi:10.1104/pp.109.135806.
[32] Adamczyk B J, Lehti-Shiu M D, Fernandez D E. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis[J]. Plant J, 2007, 50(6):1007-1019. Doi:10.1111/j.1365-313X.2007.03105.x.
[33] Hartmann U, Höhmann S, Nettesheim K, et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis[J]. Plant J, 2000, 21(4):351-360.
[34] Tao Z, Shen L, Liu C,et al. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis[J]. Plant J, 2012, 70(4):549-561. Doi:10.1111/j.1365-313X.2012.04919.x.

Last Update: 2016-06-30