我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于光响应机理模型的3种草本植物 光合特性差异解析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年03期
Page:
63-69
Column:
研究论文
publishdate:
2016-05-18

Article Info:/Info

Title:
Differences of photosynthetic characteristics based on a mechanistic model of light-response for three herbaceous plants
Article ID:
1000-2006(2016)03-0063-07
Author(s):
YAN Xiaohong12 ZHOU Bing2 WANG Ning2 YE Zipiao2 YIN Zengfang1*
1. College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China;
2. School of Life Sciences, Jinggangshan University, Ji'an 343009, China
Keywords:
light response mechanistic model dominant species light-harvesting pigment photosynthetic electron transfer effective light energy absorption cross-section Bidens frondosa Lactuca indica Polygonum lapathifolium
Classification number :
Q948; S45
DOI:
10.3969/j.issn.1000-2006.2016.03.011
Document Code:
A
Abstract:
A mechanistic model of light-response of photosynthesis was used to compare the differences of photosynthetic characteristics for Bidens frondosa, Lactuca indica and Polygonum lapathifolium. The results showed that the electron transport rates of B. frondosa and P. lapathifolium were significantly higher than that of L. indica under middle and high light, and neither appeared photinhibition under high light, whereas L. indica appeared photinhibition significantly. Net photosynthetic rate(Pn)of B. frondosa and P. lapathifolium were higher than that of L.indica under different light intensity. Chlorphyll content of three plants mature leave listed as B. frondosa>P. lapathifolium>L.indica, and P. lapathifolium>B. frondosa>L.indica for carotenoid content. Although chlorphyll content of L. indica was the lowest, its eign-absorption cross-section(σik)was the maximum. On the contrary, chlorphyll content of B. frondosa was the highest, and its σikwas the lowest. Chlorphyll content of P. lapathifolium and σik were between the other two species. The maximum electron transport rates of B. frondosa and P. lapathifolium were significantly higher than that of L. indica, which improved their electron transport rates through increasing the effective light absorption cross-section of photosynthetic pigments(σik')and decreasing the minimum average life time of photosynthetic pigment molecules in the excited state(τmin). Compared with L.indica, B. frondosa and P. lapathifolium had higher the maximal net photosynthetic rate(Pn,max), light saturation point(Isat), and dark respiratory rate(Rd).The higher NPQ of B. frondosa was helpful for thermal dissipation, and avoiding light damage. The higher arotenoid content of P. lapathifolium exerted positive effects on dissipating excess excitation energy, which was contributed to its avoid of the stress damage as high temperatures, high lights and drought. In conclusion, compared with L. indica, B. frondosa and P. lapathifolium might have better tolerance and adaptablity under environmental stress.

References

[1] 许大全. 光合作用学[M]. 北京:科学出版社, 2013.
[2] 鄢圣敏, 杨国涛, 马坤, 等. 4个水稻品种(组合)光合特性的比较研究[J].中国农学通报, 2014, 30(3): 44-48. Yan S M, Yang G T, Ma K, et al. Comparative study on photosynthetic characteristics of four rice varieties(Combinations)[J]. Chinese Agricultural Science Bulletin, 2014, 30(3): 44-48.
[3] 倪建中, 王伟, 郁书君, 等. 不同种源木棉生长及光合特性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 185-189. Doi:10.3969/j.issn.1000-2006.2015.06.033. Ni J Z, Wang W, Yu S J, et al. Analysis of growth traits and photosynthetic characteristics of Bombax ceiba among different provenances[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 185-189.
[4] 王晓红, 纪明山. 入侵植物小飞蓬及其伴生植物的光合特性[J]. 应用生态学报, 2013, 24(1): 71-77. Wang X H, Ji M S. Photosynthetic characteristics of an invasive plant Conyza canadensis and its associated plants[J]. Journal of Applied Ecology, 2013, 24(1): 71-77.
[5] Gong C, Wang J, Hu C, et al. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits[J]. Journal of Environmental Sciences, 2015, 34(8): 184-196. Doi:10.1016/j.jes.2015.03.012.
[6] Turnbull M H. The Effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rain forest tree species[J]. Endocrinology, 2015, 36(3): 542-546.
[7] 皇甫超河, 王志勇, 杨殿林. 外来入侵种黄顶菊及其伴生植物光合特性初步研究[J]. 西北植物学报, 2009, 29(4): 781-788.Doi:10.3321/j.issn:1000-4025.2009.04.021. HuangFu C H, Wang Z Y, Yang D L. Basic photosynthetic characteristics of exotic invasive weed Flaveria bidentis and its comanion species[J]. Acta Botanica Boreali Occidentalia Sinica, 2009, 29(4): 781-788.
[8] Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J]. Plant Cell and Environment, 2002, 25(2): 275-294.
[9] 张永征, 李海东, 李秀, 等. 光强和水分胁迫对姜叶片光合特性的影响[J]. 园艺学报, 2013,40(11):2255-2262. Doi:10.3969/j.issn.0513-353X.2013.11.018. Zhang Y Z, Li H D, Li X, et al. Effects of light intensity and water stress on leaf photosynthetic characteristics of ginger[J]. Acta Horticulturae Sinica, 2013, 40(11):2255-2262.
[10] 丁俊祥, 邹杰, 唐立松, 等. 克里雅河流域荒漠-绿洲交错带3种不同生活型植物的光合特性[J]. 生态学报, 2015, 35(3): 733-741.Doi:10.5846/stxb201310302623. Ding J X, Zou J, Tang L S, et al. Photosynthetic characteristics of three different life-form plants in the desert-oasis ecotone of Keiya River Basin[J]. Acta Ecologica Sinica, 2015, 35(3): 733-741.
[11] Bassman J H, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa × P. deltoids[J]. Tree Physiology, 1991, 8(2): 145-159.
[12] Baly E C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London Series B(Biological Sciences), 1935, 117: 218-239.
[13] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. Doi:10.1007/bf00386231.
[14] 闫小红, 尹建华, 段世华, 等. 四种水稻品种的光合光响应曲线及其模型拟合[J]. 生态学杂志, 2013, 32(3): 604-610. Yan X H, Yin J H, Duan S H, et al. Photosynthesis light response curves of four rice varieties and model fitting[J]. Chinese Journal of Ecology, 2013, 32(3): 604-610.
[15] Ye Z P, Robakowski P, Suggett D J. A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules[J]. Planta, 2013, 237(3):837-847. Doi:10.1007/s00425-012-1790-z.
[16] Ye Z P, Suggett J D, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J]. New Phytologist, 2013, 199(1):110-120. Doi:10.1111/nph.12242.
[17] Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1):1-15.
[18] Chazdon R L, Pearcy R W, Lee D W, et al. Photosynthetic responses of tropical forest plants to contrasting light environments[J]. Tropical Forest Plant Ecophysiology, 1996:5-55. Doi:10.1007/978-1-4613-1163-8_1.
[19] 叶子飘, 胡文海, 肖宜安, 等. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11):1241-1249. Doi:10.3724/SP.J.1258.2014.00119. Ye Z P, Hu W H, Xiao Y, et al. A mechanistic model of light-response of photosynthetic electron flow and its application[J]. Chinese Journal of Plant Ecology, 2014, 38(11):1241-1249.
[20] Valentini R, Epron D, de Angelis P, et al. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak(Q. cerris L.)leaves: diurnal cycles under different levels of water supply[J]. Plant Cell and Environment, 1995, 18(6): 631-640.
[21] Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant, Cell and Environment, 1992, 15(3):271-282. Doi:10.1111/j.1365-3040.1992.tb00974.x.
[22] 王强, 金则新, 郭水良, 等. 濒危植物长叶榧的光合生理生态特性[J]. 生态学报, 2014, 34(22):6460-6470. Doi:10.5846/stxb201302260307. Wang Q, Jin Z X, Guo S L, et al. Photosynthetic traits of the endangered plant species Torreya jackii[J]. Acta Ecologica Sinica, 2014, 34(22):6460-6470.
[23] 杨婷, 许琨, 严宁, 等. 三种高山杜鹃的光合生理生态研究[J]. 植物分类与资源学报, 2013, 35(1):17-25. Doi:10.7677/ynzwyj201312056. Yang T, Xu K, Yan N, et al. Photosynthetic ecophysiology of three species of genus Rhododendron[J]. Plant Diversity and Resources, 2013, 35(1):17-25.
[24] Amthor J S. Respiration and crop productivity[M]. New York: Spinger-Verlag, 1989.
[25] McDowell S C L. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae)[J].American Journal of Botany, 2002, 89(9): 1431-1438. Doi:10.3732/ajb.89.9.1431.
[26] Zheng Y L, Feng Y L, Lei Y B, et al. Comparisons of plastic responses to irradiance and physiological traits by invasive Eupatorium adenophorum and its native congeners[J]. Journal of Plant Physiology, 2012, 169(9): 884-891. Doi:10.1016/j.jplph.2012.02.011.
[27] 王高鸿, 陈兰洲, 李根保, 等. 改变捕光色素比例用于提高微藻光合效率[J]. 科学通报, 2005, 50(14):1475-1479. Doi:10.3321/j.issn:0023-074X.2005.14.011.
[28] Heraud P, Beardall J. Changes in chlorophyll fluorescence during exposure of Dunaliella tertiolecta to UV radiation indicate a dynamic interaction between damage and repair processes[J]. Photosynthesis Research, 2000, 63(2): 123-134. Doi:10.1023/A:1006319802047.
[29] Heber U, Bilger W, Türk R, et al. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria[J]. New Phytologist, 2010, 185(2):459-470. Doi:10.1111/j.1469-8137.2009.03064.
[30] García-Plazaola J I, Esteban R, Fernández-Marín B, et al. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model[J]. Photosynthesis Research, 2012, 113(1-3): 89-103. Doi:10.1007/s11120-012-9760-7.
[31] Palliotti A, Tombesi S, Frioni T, et al. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses[J]. Journal of Plant Physiology, 2015, 185: 84-92. Doi:10.1016/j.jplph.2015.07.007.
[32] 赵广琦, 张利权, 梁霞. 芦苇与入侵植物互花米草的光合特性比较[J]. 生态学报, 2005, 25(7): 1604-1611. Doi:10.3321/j.issn:1000-0933.2005.07.011. Zhao G Q, Zhang L Q, Liang X. A comparison of phtosynthetic characteristics between an nivasive plant Spartina alterniflora and an indigenous plant Phragmites australis[J]. Acta Ecologica Sinica, 2005, 25(7):1604-1611.
[33] 朱慧, 马瑞君. 入侵植物假臭草及其伴生种的光合特性[J]. 福建林学院学报, 2010, 30(2): 145-149. Doi:10.3969/j.issn.1001-389X.2010.02.012. Zhu H, Ma R J. Comparison of photosynthetic characteristics between an invasive plant, Eupatorium catarium and associated species[J]. Journal of Fjujian College of Forestry, 2010, 30(2): 145-149.
[34] Nagel J M, Griffin K L. An gas-exchange characteristics help explain the invasive success of Lythrum salicaria?[J]. Biological Invasions, 2004, 6(1):101-111. Doi:10.1023/b:binv.0000010125.93370.32.

Last Update: 2016-06-30