我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

森林冠层多角度高光谱观测系统的实现与分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年03期
Page:
101-107
Column:
研究论文
publishdate:
2016-05-18

Article Info:/Info

Title:
Implementation and analysis of multi-angle hyperspectral observation system for forest canopy
Article ID:
1000-2006(2016)03-0101-07
Author(s):
ZHANG Qian1 JU Weimin1* YANG Fengting2 CAO Lin3 FENG Yongkang1
1. International Institute for Earth System Sciences, Nanjing University, Nanjing 210023,China;
2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China;
3. College of Forestry, Nanjing Forestry University, Nanjing 210037,China
Keywords:
multi-angle hyperspectral observation system quantitative remote sensing flux study forest canopy
Classification number :
S715
DOI:
10.3969/j.issn.1000-2006.2016.03.017
Document Code:
A
Abstract:
For better understanding of bidirectional reflectance effects of heterogeneous surface observed via optical remote sensing, and to improve the ability of quantitative retrieval of canopy structure and physiological parameters, this study introduced an improved tower-based automatic canopy multi-angle hyperspectral observation system at Qianyanzhou flux station in Jiangxi Province. This system included a spectroradiometer(UniSpec-DC), a Pan-Tilt Unit(PTU), a power supplying system, a software control system, serial converters, and so on. A 45° angular holder is mounted on the tilt axis of PTU, which allows a full range of view zenith angle(θV)for canopy reflectance measurements, while the inherent motion range of tilt axis is only between -37° and 42° around the vertical axis. Several pre-processing methods, for example, sensor calibration, dark currency correction, abnormal data removal, and interpolations of missing angles and outrange data, were applied on the data obtained from the system. The pre-processed data then could be used to compute canopy reflectance, vegetation indices, and do quantitative analyses. Strong relationships(R2 = 0.961 4, P<0.001)were observed between “photosynthetically active radiation”(PAR)from multi-angle hyperspectral observation system and tower measurements. Photochemical reflectance index(PRI)derived from reflectance data obtained by the system showed significant logarithmic relationships(R2 = 0.514 2, P<0.001)with light use efficiency(LUE)calculated by flux tower data, which was well related to previous studies. Thus, multi-angle hyperspectral remote sensing is not only an important tool in quantitative researches of forest ecosystems, but also an effective way to further understanding the scaling issues of aero space remote sensing and filed measurements.

References

[1] 王妮, 彭世揆, 刘斌, 等. 近10年江苏宿迁森林蓄积量变化的定量遥感监测[J]. 南京林业大学学报(自然科学版), 2013, 37(5): 65-69.Doi:10.3969/j.issn.1000-2006.2013.05.013. Wang N, Peng S K, Liu B, et al. A study on detecting the changes of the forest volume of Suqian in Jiangsu based on the quantitative remote sensing during 2000-2010 [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(5): 65-69.
[2] 余坤勇, 林芳, 刘健, 等. 基于RS的闽江流域马尾松林分蓄积量估测模型研究[J]. 福建林业科技, 2006, 33(1): 6-20.Doi:10.3969/j.issn.1002-7351.2006.01.004. Yu K Y, Lin F, Liu J, et al. Study on estimating model of Pinus massoniana stand volume in Minjiang watershed based on RS technologies [J]. Journal of Fujian Forestry Science and Technology, 2006, 33(1): 6-20.
[3] Soudani K, Hmimin G, Dufrene E, et al. Relationships between photochemical reflectance index and light-use efficiency in deciduous and evergreen broadleaf forests [J]. Remote Sensing of Environment, 2014, 144: 73-84.Doi:10.1016/j.rse.2014.01.017.
[4] Gamon J A, Cheng Y F, Claudio H, et al. A mobile tram system for systematic sampling of ecosystem optical properties [J]. Remote Sensing of Environment, 2006, 103: 246-254.Doi:10.1016/j.rse.2006.04.006.
[5] Hilker T, Coops N C, Nesic Z, et al. Instrumentation and approach for unattended year round tower based measurements of spectral reflectance [J]. Computers and Electronics in Agriculture, 2007, 56: 72-84.Doi:10.1016/j.compag.2007.01.003.
[6] 王捷, 肖爱平, 焦子锑. 植被多角度光谱信息采集系统的设计与分析[J]. 湖北农业科学, 2014, 53(9): 2165-2170. Doi:10.3969/j.issn.0439-8114.2014.09.053. Wang J, Xiao A P, Jiao Z T. Designs and analyses of vegetation multi-angle spectral data acquisition system [J]. Hubei Agricultural Sciences, 2014, 53(9): 2165-2170.
[7] 张东彦, 王秀, Coburn CRAIG, 等. 地面多角度农业遥感观测装置设计与试验[J]. 农业机械学报, 2013, 44(1): 174-178.Doi:10.6041/j.issn.1000-1298.2013.01.033. Zhang D Y, Wang X, Craig C, et al. Design and experiment of ground-based agriculture-oriented multi-angle observation device [J]. Transactions of the Chinese Society of Agricultural machinery, 2013, 44(1): 174-178.
[8] 徐希孺. 遥感物理[M]. 北京: 北京大学出版社, 2005.
[9] 高峰, 朱启疆. 植被冠层多角度遥感研究进展[J]. 地理科学, 1997, 17(4): 346-355. Gao F, Zhu Q J. The advance in multi-angle remote sensing of vegetation canopy [J]. Scientia Geographica Sinica, 1997, 17(4): 346-355.
[10] 李莉. 高光谱和多角度遥感提取植被冠层水分信息研究[D]. 北京: 中国气象科学研究院, 2008. Li L. Study on the vegetation canopy water based on hyperspectral and multi-angular remote sensing information [D]. Beijing: Chinese Academy of Meteorological Sciences, 2008.
[11] 车大为, 陈圣波, 吕乐婷, 等. 多角度遥感中BRDF模型研究的现状与展望[J]. 吉林大学学报(地球科学版), 2008, 38: 229-231. Che D W, Chen S B, Lyu L T, et al. The research and advance of bi-directional reflectance model in multi-angle remote sensing [J]. Journal of Jilin University(Earth Science Edition), 2008, 38: 229-231.
[12] 郑腾飞, 于鑫, 包云轩. 多角度高光谱对光化学反射植被指数估算光能利用率的影响探究[J]. 热带气象学报, 2014, 30(3): 577-584.Doi:10.3969/j.issn.1004-4965.2014.03.19. Zheng T F, Yu X, Bao Y X. Estimating light use efficiency by photochemical reflectance index with multi-angle hyper-spectrum [J]. Journal of Tropical Meteorology, 2014, 30(3): 577-584.
[13] Gamon J A, Penuelas J, Field C B, et al. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency [J]. Remote Sensing of Environment, 1992, 41: 35-44.Doi:10.1016/0034-4257(92)90059-S.
[14] Penuelas J, Filella I, Gamon J A, et al. Assessment of photosynthetic radiation-use efficiency with spectral reflectance [J]. New Phytologist, 1995, 131:291-296.Doi: 10.1111/j.1469-8137.1995.tb03064.x.
[15] Monteith J L. Solar-radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology, 1972(9):747-766.Doi: 10.2307/2401901.
[16] Chen J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34:1353-1368.Doi:10.1109/36.544559.
[17] Hilker T, Hall F G, Coops N C, et al. Separating physiologically and directionally induced changes in PRI using BRDF models [J]. Remote Sensing of Environment, 2008, 112(6): 2777-2788.Doi:10.1016/j.rse.2008.01.011.

Last Update: 2016-06-30