我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

胶合板梯度胶合界面应变的数字散斑法分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年03期
Page:
115-120
Column:
研究论文
publishdate:
2016-05-18

Article Info:/Info

Title:
Investigation of strain of gradient density interface of plywoodusing digital speckle correlation method
Article ID:
1000-2006(2016)03-0115-06
Author(s):
GUAN Mingjie12 FU Xiangfei1 LI Junbiao1 SUN Fengwen123 YOU Jian4
1.College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
2, Bamboo Engineering Technology Research Center of State Forest Administration, Nanjing 210037, China;
3. Poplar Processing and Utilization Technical Institute(Siyang), Nanjing Forestry University, Siyang 223700, China;
4. Youjia Wood Product Co. Ltd.,Siyang 223700, China
Keywords:
plywood strain gradient density interface vertical density profile digital speckle correlation(DIC)
Classification number :
S781
DOI:
10.3969/j.issn.1000-2006.2016.03.019
Document Code:
A
Abstract:
The vertical density profile, density gradient and interface of three types of plywood, namely homogeneous, thin shell and inner strengthened structures, were investigated in this study. Strain distributions of different gradient density interfaces before and after the aging process were measured by the digital speckle correlation(DIC)method. Experiment results showed that the density of the homogenous structure plywood was relatively uniform, measuring about 0.83 g/cm3. Large density gradient and weak interface existed on the cross sections of both shell and inner strengthened structure plywood. Under a load of about 450 N, the maximum shear strain occurred near the notches at both ends of the bonding interface and shear strain decreased along the bond line to the middle zone. Generally, the shear strain of the higher density layer of gradient interface was greater than that on the lower density layer of the specimens. After aging, the shear strain on the bonding interface decreased compared with the control group. The higher density layer of the gradient interface of specimens had greater resistance to aging process, which was resulted from its slower strain decrease than that on the lower density layer on the gradient interfaces.

References

[1] 王宏棣, 何金存. 人工林杨木木材强化研究发展现状及趋势[J]. 林业机械与木工设备, 2008, 36(11): 13-17. Wang H D,He J C. Development status and trend of the wood strengthening study on plantation grown poplar[J]. Forestry Machinery & Woodworking Equipment, 2008, 36(11): 13-17
[2] 陈波, 张玉玲, 范鹏辉, 等. 低分子酚醛树脂处理杨木物理力学性能测试[J]. 辽宁林业科技, 2009(6): 18-21.
[3] 李文定, 张 洋, 阮重坚, 等. 杨木单板的压缩与树脂浸渍处理对胶合板性能的影响[J]. 林产工业, 2010(6): 10-13. Li W D, Zhang Y, Yuan C J, et al. Influence of poplar veneer comprssion and impregnation on properties of poplar plywood[J]. China Forest Products Industry, 2010(6): 10-13.
[4] Konnerth J, Valla A, Gindl W, et al. Measurement of strain distribution in timber finger joints [J]. Wood Science and Technology, 2006, 40(8): 631-636.
[5] Müller U, Sretenovic A, Vincenti A, et al. Direct measurement of strain distribution along a wood bond line. Part1: Shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry [J]. Holzfors Chung, 2005, 59(3): 300-306.
[6] Serrano E, Enquist B. Contact-free measurement and non-linear finite element analysis of strain distribution along wood adhesive bonds [J]. Holzfors Chung, 2005(59): 641-646.
[7] Valla A, Konnerth J, Konnerth J, et al. Comparison of two optical methods for contactless, full field and highly sensitive in-plane deformation measurements using the example of plywood [J]. Wood Sci Technol, 2011(45): 755-765.
[8] Guan M J, Wang L, Yong C. Digital image correlation measuring shear strain distribution on wood/adhesive interphase modified by sealants [J]. Bioresources, 2014, 9(3): 5567-5576.
[9] 张齐生, 孙丰文, 李燕文. 竹木复合集装箱底板使用性能的研究—与阿必东胶合板底板的对比分析[J]. 南京林业大学学报, 1997, 21(1):27-32.Doi:10.3969/j.issn.1000-2006.1997.01.006. Zhang Q S, Sun F W, Li Y W. A study on the properties in service of bamboo and wood composite container floor—contrasting and analysis with apiting plywood floor[J]. Journal of Nanjing Forestry University, 1997,21(1):27-32.
[10] 张齐生. 竹材胶合板的研究—Ⅲ. 竹材胶合板的物理和机械性能[J].南京林业大学学报, 1989, 13(2): 13-17. Doi:10.3969/j.issn.1000-2006.1989.02.003. Zhang Q S. A study of bamboo plywood Ⅲ. Physical and mechanical performance for bamboo plywood[J]. Journal of Nanjing Forestry University,1989,13(2):13-17
[11] 付祥飞, 关明杰, 孙丰文. 新型集装箱底板老化性能试验[J]. 林业科技开发, 2015, 29(4): 95-98. Fu X F, Guan M J, Sun F W. Study on aging properties of new-type container flooring [J]. China Forestry Science and Technology, 2015, 29(4): 95-98.
[12] 全国人造板标准化技术委员会. GB/T 19536—2004 集装箱底板用胶合板[S]. 中国标准出版社,北京:2004: 1-9.
[13] American Society for Testing and Materials(ASTM). D 1037-2012 Standard test methods for evaluating properties of wood-base fiber and particle panel materials [S].West Conshohocken,Pennsylvania, 2012: 112-118.
[14] 全国人造板标准化技术委员会. GB/T 17657—2013 人造板及饰面人造板理化性能试验方法[S]. 北京:中国标准出版社,2013: 27-31.
[15] Knorz M, Niemz P, van de Kuilen J W. Measurement of moisture-related strain in bonded ash depending on adhesive type and glueline thickness[J].Holzforschung, 2016, 70(2):145-155,Doi: 10.1515/hf-2014-0324.

Last Update: 2016-06-30