我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

理化因素对风信子花色苷稳定性的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年04期
Page:
69-73
Column:
研究论文
publishdate:
2016-08-30

Article Info:/Info

Title:
Effects of physical and chemical factors on anthocyanin stability in Hyacinthus
Article ID:
1000-2006(2016)04-0069-05
Author(s):
TANG Dongqin1 XU Yiqian1 YUAN Yuan1 TAO Xiuhua2 SHI Yimin1
1.School of Agriculture &
Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
2.Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
Keywords:
hyacinthus physical and chemical factors metal ion anthocyanin stability
Classification number :
Q947
DOI:
10.3969/j.issn.1000-2006.2016.04.011
Document Code:
A
Abstract:
In order to investigate the effect of physical and chemical factors on anthocyanin stability in Hyacinthus, the petals of hyacinthus ‘Woodstock' was used to study the effects of temperature, light, pH and metal ions on the changing patterns of the color of anthocyanin extraction and spectral characteristics by experiments in vitro. The results showed that the anthocyanidin from hyacinthus petals was not tolerant to high temperature and strong light, and pH exerted remarkable effects on anthocyanins since there was a bathochromic shift of the maximwm absorption warelengte as the increase of pH value. Fe3+, Fe2+, Al3+ and Cu2+ changed the color of anthocyanins, but the influence of Mg2+ was not significant. High concentration of Ca2+ and Zn2+ produced the hyperchromicity effect, while Pb2+ created white precipitation in anthocyanin solution. High concentration of Fe2+ and Pb2+ caused the maximum wavelength blue shift, yet the other metal ions showed bathochromic shift effect with the increase concentration to various degrees. These results could provide some scientific basis to explore the mechanism of flower color formation in hyacinthus, identifying the structure of the hyacinthus anthocyanin and further utilizing the hyacinthus pigment.

References

[1] Escribano-Bailón M T, Santos-Buelga C, Rivas-Gonzalo J C. Anthocyanins in cereals[J]. Journal of Chromatography A, 2004, 1054: 129-141. Doi: 10.1016/j.chroma.2004.08.152.
[2] 孙建霞, 张燕, 胡小松, 等. 花色苷的结构稳定性与降解机制研究进展[J]. 中国农业科学, 2009, 42(3):996-1008. Doi: 10.3864/j.issn.0578-1752.2009.03.031. Sun J X, Zhang Y, Hu X S, et al. Structural stability and degradation mechanisms of anthocyanins[J]. Scientia Agricultura Sinica, 2009, 42(3): 996-1008.
[3] Laleh G H, Frydoonfar H, Heidary R, et al. The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species[J]. Pakistan Journal of Nutrition,2006, 5(1): 90-92.
[4] Dyrby M, Westergaard N, Stapelfeldt H. Light and heat sensitivity of red cabbage extract in soft drink model systems[J].Food Chemistry, 2001, 72(4): 431-437. Doi: 10.1016/S0308-8146(00)00251-X.
[5] Brouillard R. The in vivo expression of anthocyanin colour in plants[J]. Phytochemistry, 1983, 22(6): 1311-1323. Doi:10.1016/S0031-9422(00)84008-X.
[6] 孙卫, 李崇晖, 王亮生, 等. 菊花不同花色品种中花青素苷代谢分析[J]. 植物学报, 2010, 45(3):327-336. Doi: 10.3969/j.issn.1674-3466.2010.03.004. Sun W, Li C H, Wang L S, et al. Analysis of anthocyanins and flavones in different-colored flowers of chrysanthemum[J]. Chinese Bulletin of Botany,2010, 45(3): 327-336.
[7] Kirca A, Özkan M, Cemerogˇlu B. Stability of black carrot anthocyanins in various fruit juices and nectars[J]. Food Chemistry, 2006, 97(4):598-605. Doi:10.1016/j.foodchem.2005.05.036.
[8] 樊金玲,朱文学,巩卫东,等. 牡丹花色苷的热稳定性和降解动力学[J]. 应用化学,2010,27(2): 231-236. Doi: 10.37249/sp.J1095.2010.90159. Fan J L, Zhu W X, Gong W D, et al. Thermal stability and degradation kinetics of anthocyanin in tree penoy extract[J]. Chines Journal of Applied Chemistry, 2010, 27(2): 231-236.
[9] 赵昶灵, 陈俊愉, 刘雪兰, 等. 理化因素对梅花‘南京红须'花色色素颜色呈现的效应[J]. 南京林业大学学报(自然科学版), 2004, 28(2):27-32. Doi: 10.3969 / j.jssn. 1000-2006.2004.02.006. Zhao C L, Chen J Y, Liu X L, et al. Effects of physical and chemical factors on the color expression of the flower color pigment of Prunus mume Sieb.et Zucc. ‘Nanjing Hongxu'(Nanjing red-bearded)[J]. Journal of Nanjing forestry university(Natural Sciences Edition), 2004, 28(2):27-32.
[10] Mol J, Grotewold E, Koes R. How genes paint flowers and seeds[J]. Trends Plant Science, 1998, 3(6):212-217. Doi:10.1016/S1360-1385(98)01242-4.
[11] Yamaguchi T, Fukada-Tanaka S, Inagaki Y, et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant Cell Physiology, 2001, 42(5): 451-461. Doi: 10.1093/pcp/pce080.
[12] Momonoi K, Yoshida K, Mano S, et al. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation[J]. The Plant Journal, 2009, 59(3):437-447. Doi: 10.1111/j.1365-313X.2009.03879.x.
[13] 白新祥. 菊花花色形成的表型分析[D]. 北京:北京林业大学, 2007:67-70. Bai X X. Phenotype analysis of flower coloration of Chrysanthemum × morifolium Ramat[D]. Beijing:Beijing forestry university, 2007:67-70.
[14] 王燕. 樱桃李(Prunus cerasifera Ehrh.)果实主要花色苷组分及相关特性分析[D]. 泰安:山东农业大学, 2012:18. Wang Y. Analysis of major anthocyanins composition and correlation properties of Myrobalan plum(Prunus cerasifera Ehrh.)fruit[D]. Tai'an:Shangdong Agricultural University, 2012:18.
[15] Yoshida K, Kitahara S, Ito D, et al. Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis [J]. Phytochemistry, 2006, 67:992-998. Doi:10.1016/j.phytochem.2006.03.013.
[16] 戴亮芳, 温秀芳, 罗向东. 不同花色杜鹃花色素成分与稳定性分析研究[J]. 安徽农业科学, 2013, 41(14):6455-6458. Doi:10.3969/j.issn.0517-6611.2013.14.131. Dai L F, Wen X F, Luo X D. 2013. Analysis on components and stability of anthocyanidin from Rhododendron with different color[J]. Journal of Anhui Agriculturea Science, 41(14):6455-6458.

Last Update: 2016-08-30