我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

确定P-V曲线中质壁分离点的方法比较(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年04期
Page:
89-94
Column:
研究论文
publishdate:
2016-08-30

Article Info:/Info

Title:
Comparison of different methods for determining the turgor loss point in pressure-volume curves
Article ID:
1000-2006(2016)04-0089-06
Author(s):
DUAN Ruibing SUN Huizhen*
Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
Keywords:
pressure-volume curves water potential at turgor loss point relative water content at turgor loss point methods for determining the turgor loss point
Classification number :
S718.5
DOI:
10.3969/j.issn.1000-2006.2016.04.014
Document Code:
A
Abstract:
Water potential at turgor loss point(Ψtlp)and relative water content at turgor loss point(CRW,tlp)have been considered important measurements of the drought tolerance of trees. This study compared Ψtlp and CRW,tlp by two types of P-V curves(typeⅠ: Ψ versus C-1RW; typeⅡ:Ψ-1 versus 1-CRW)and with three common calculation methods(mathematical method, graphical method, and PV computer program)in type Ⅱ for major tree species in the eastern mountain region of Northeast China. The results showed that average values of Ψtlp and CRW,tlp of eight species calculated from type Ⅰ were 0.20 MPa and 3.17% higher than those calculated from type Ⅱ. Especially parameters for the coniferous species Larix gmelinii and Pinus koraiensis were more significantly affected by two types of transformations than those of the broad-leaved species. In addition, the difference among species changed with different types of transformations. Ψtlp and CRW,tlp calculated by three methods for the same species were similar except that Ψtlp for Ulmus japonica calculated by the computer program was significantly higher than the value calculated by the mathematical method(P<0.05). The determination coefficients(R2)between values of Ψtlp or CRW,tlp calculated by the three methods were in the range of 0.63-0.90(P<0.01), and the values of R2 of the mathematical method and graphical method were the highest. Compared with the typeⅠcurve, the shape of typeⅡ P-V curve had the advantages of being smooth and the obvious boundary between the curve part and the straight portion, making the turgor loss point easily detectable via plots of the data. Meanwhile, the graphical method had the advantage of easily applied, which can make it being used widely in the future.

References

[1] Allen C D, Macalady A K, Chenchouni H,et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. Doi:10.1016/j.foreco.2009.09.001.
[2] Sheffield J, Wood E F. Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle[J]. Journal of Climate, 2008, 21(3): 432-458. Doi:10.1175/2007jcli1822.1.
[3] Wang W, Peng C, Kneeshaw D D, et al. Drought-induced tree mortality: ecological consequences, causes, and modeling[J].Environmental Reviews, 2012, 20(2): 109-121. Doi:10.1139/a2012-004.
[4] Martínez-vilalta J, Lloret F, Breshears D. Drought-induced forest decline: causes, scope and implications[J]. Biology Letters, 2012, 8(5): 689-691. Doi:10.1098/rsbl.2011.1059.
[5] Brodribb T J, Holbrook N M, Edwards E J,et al. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees[J]. Plant, Cell & Environment, 2003, 26(3): 443-450. Doi:10.1046/j.1365-3040.2003.00975.x.
[6] Bartlett M K, Zhang Y, Kreidler N,et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait[J]. Ecology Letters, 2014, 17(12): 1580-1590. Doi:10.1111/ele.12374.
[7] Bartlett M K, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis[J]. Ecology Letters, 2012, 15(5): 393-405. Doi:10.1111/j.1461-0248.2014.0175.x.
[8] 李骁,王迎春,征荣.西鄂尔多斯地区强旱生小灌木水分参数的研究(Ⅰ)[J]. 中国沙漠, 2005, 25(4): 581-586. Doi:10.3321/j.issn:1000-694X.2005.04.022. Li X, Wang Y C, Zheng R. Water parameters of xeric shrubs in West Erdos Region[J]. Journal of Desert Research, 2005, 25(4): 581-586.
[9] 杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J]. 生态学报, 1997, 17(4): 364-370. Yang M S, Pei B H, Yu D M. Influence of water stress on the abilities to maintain turgor and adjust osmosis in seedlings of hybrid clones of Populus tomentosa[J]. Acta Ecologica Sinica, 1997, 17(4): 364-370.
[10] Tyree M T, Hammel H T. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique[J]. Journal of Experimental Botany, 1972, 23(1): 267-282. Doi:10.1093/jxb/231.267.
[11] 张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅲ)[J]. 北京林业大学学报, 1994, 16(4): 46-54. Zhang J G, Li J Y, Jiang J P. A study on water parameters of plantations in mountain areas of west Beijing[J]. Journal of Beijing Forestry University, 1994, 16(4): 46-54.
[12] 李岩,李德全,潘海春,等. PV技术在研究细胞壁弹性调节上的应用[J]. 植物生理学通讯, 1996, 32(3): 201-203. Li Y, Li D Q, Pan H C, et al. Use of PV technique in studying cell wall elastic adjustment[J]. Plant Physiology Communications, 1996, 32(3): 201-203.
[13] 冯玉龙,姜淑梅. 番茄对高根温引起的叶片水分胁迫的适应[J]. 生态学报, 2001, 21(5): 747-751. Doi:10.3321/j.issn:1000-0933.2001.05.009. Feng Y L, Jiang S M. The adaptation to leaf water stress caused by high root temperature in tomato[J]. Acta Ecologica Sinica, 2001, 21(5): 747-751.
[14] 冯玉龙,巨关升,朱春全. 杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J]. 林业科学, 2003, 39(3): 30-36. Feng Y L, Ju G S, Zhu C Q. Responses of photosynthesis and PV-parameters to water stress in Poplar clone seedlings[J]. Scientia Silvae Sinicae, 2003, 39(3): 30-36.
[15] 何兴东,丛培芳,高玉葆,等. 利用压力-容积曲线研究四种草本植物的抗旱性[J]. 南开大学学报(自然科学版), 2006, 39(3): 16-22. He X D, Cong P F, Gao Y B, et al. Study on drought resistance of four herbs using pressure-volume curve[J]. Acta Scientiarum Naturallum Universitatis Nankaiensis, 2006, 39(3): 16-22.
[16] 苏印泉,李瀚,李际红.林木体内水分状况测定——P-V 曲线的制作及其应用[J]. 西北林学院学报, 1989, 4(2): 33-38. Su Y Q, Li H, Li J H. Determination of the moisture state in forest trees-a process of making the P-V curve and it's application[J]. Journal of Northwest Forestry University, 1989, 4(2): 33-38.
[17] Zhu S, Song J, Li R, et al. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant, Cell & Environment, 2013, 36(4): 879-891. Doi:10.1111/pce.12024.
[18] 刘建伟,刘雅荣,王世绩. PV技术的计算机处理及其在树木水分关系研究中的应用[J]. 生态学杂志, 1994, 13(1): 60-63. Liu J W, Liu Y R, Wang S J. Computer processing of PV curve analysis and its application in the research of woody plant-water relation[J]. Chinese Journal of Ecology, 1994, 13(1): 60-63.
[19] 李俊辉,李秧秧,赵丽敏,等. 立地条件和树龄对刺槐和小叶杨叶水力性状及抗旱性的影响[J]. 应用生态学报, 2012, 23(9): 2397-2403. Li J H, Li Y Y, Zhao L M, et al. Effects of site conditions and tree age on Robinia pseudoacacia and Populus simonii leaf hydraulic traits and drought resistance[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2397-2403.
[20] Meinzer F, Rundel P, Sharifi M, et al. Turgor and osmotic relations of the desert shrub Larrea tridentata[J]. Plant, Cell & Environment, 1986, 9(6): 467-475. Doi:10.1111/j.1365-3040.1986.tb01762.x.
[21] Schulte P, Hinckley T. A comparison of pressure-volume curve data analysis techniques[J]. Journal of Experimental Botany, 1985, 36(10): 1590-1602. Doi:10.1093/jxb/36.10.1590.
[22] Wang C, Han Y, Chen J,et al. Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles[J]. Agricultural and Forest Meteorology, 2013, 177: 83-92.
[23] 王万里. 压力室(Pressure Chamber)在植物水分状况研究中的应用[J]. 植物生理学通讯, 1984, 20(3): 52-57. Wang W L. Using pressure chamber to study the water characteristics of plant[J]. Plant Physiology Communications, 1984, 20(3): 52-57.
[24] Sinclair R, Venables W. An alternative method for analysing pressure-volume curves produced with the pressure chamber[J]. Plant, Cell & Environment, 1983, 6(3): 211-217. Doi:10.1111/1365-3040.ep11587627.
[25] Pardossi A, Malorgio F, Oriolo D,et al. Water relations and osmotic adjustment in Apium graveolens during long-term NaCl stress and subsequent relief[J]. Physiologia Plantarum, 1998, 102(3): 369-376.
[26] 郭连生,田有亮. 对几种针阔叶树种耐旱性生理指标的研究[J]. 林业科学, 1989, 25(5): 389-394. Guo L S, Tian Y L. Research on the physiological index of drought-endurance for several species of needle-leaves and broad-leaves trees[J]. Scientia Silvae Sinicae, 1989, 25(5): 389-394.
[27] Richter H. A diagram for the description of water relations in plant cells and organs[J]. Journal of Experimental Botany, 1978, 29(5): 1197-1203. Doi:10.1093/jxb/29.5.1197.
[28] Tyree M T, Richter H. Alternate methods of analysing water potential isotherms: some cautions and clarifications.II. curvilinearity in water potential isotherms[J]. Canadian Journal of Botany, 1982, 60(6): 911-916.
[29] Tyree M T, Richter H. Alternative methods of analyzing water potential isotherms: some cautions and clarifications I. the impact of non-ideality and of some experimental errors[J]. Journal of Experimental Botany, 1981, 32(3): 643-653.
[30] Tyree M, Macgregor M, Petrov A,et al. A comparison of systematic errors between the Richards and Hammel methods of measuring tissue-water relations parameters[J]. Canadian Journal of Botany, 1978, 56(17): 2153-2161.
[31] Tanentzap F M, Stempel A, Ryser P. Reliability of leaf relative water content(RWC)measurements after storage: consequences for in situ measurements[J]. Botany, 2015, 93(9): 535-541. Doi:10.1139/cjb-2015-0065.
[32] Kubiske M E, Abrams M D. Rehydration effects on pressure-volume relationships in four temperate woody species: variability with site, time of season and drought conditions[J]. Oecologia, 1991, 85(4): 537-542.
[33] Arndt S K, Irawan A, Sanders G J. Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves[J]. Physiologia Plantarum, 2015, 155(4): 355-368.
[34] Abrams M D, Menges E S. Leaf ageing and plateau effects on seasonal pressure-volume relationships in three sclerophyllous Quercus species in south-eastern USA[J]. Functional Ecology, 1992, 6(3): 353-360. Doi:10.2307/2389527.
[35] Kubiske M E, Abrams M D. Seasonal, diurnal and rehydration-induced variation of pressure-volume relationships in Pseudotsuga menziesii[J]. Physiologia Plantarum, 1991, 83(1): 107-116.
[36] Ritchie G A, Shula R G. Seasonal changes of tissue-water relations in shoots and root systems of Douglas-fir seedlings[J]. Forest Science, 1984, 30(2): 538-548.
[37] Yan M, Yamamoto M, Yamanaka N,et al. A comparison of pressure-volume curves with and without rehydration pretreatment in eight woody species of the semiarid loess plateau[J]. Acta Phy-siologiae Plantarum, 2013, 35(4): 1051-1060.

Last Update: 2016-08-30