我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

表面阻尼涂饰意杨单板的动态力学特性(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年04期
Page:
125-130
Column:
研究论文
publishdate:
2016-08-30

Article Info:/Info

Title:
Dynamic mechanical characteristics of poplar veneers painted with damping coatings
Article ID:
1000-2006(2016)04-0125-06
Author(s):
XU Xinwu YANG Xuelian LYU Jining CHEN Ling SUN Yan XU Shu
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
poplar veneer damping coating dynamic mechanical characteristics time-temperature superposition(TTS)
Classification number :
S781
DOI:
10.3969/j.issn.1000-2006.2016.04.020
Document Code:
A
Abstract:
In order to develop wood-based damping plywood with anti-slip & vibration structural properties, damping coatings were used to treat poplar veneers. Two damping constructions, i.e., freedom and constrained, were tested. The dynamic mechanical properties of the veneer-based damping constructions were analyzed using the dynamic thermo-mechanical analysis(DMA)method. The research results showed that: ① Veneer-based damping constructions exhibited good damping performance at room temperature by applying damping coatings on veneer surface. ② The thickness of cured coating on veneer surface significantly influenced the damping performance, i.e., the thicker paint layer led to greater combined loss factor(η)and wider effective damping temperature range. With 0.5-2.0 mm thick freedom damping paints, η values were all greater than 0.10 with a peak greater than 0.30. Constrained veneer-based damping construction had the maximum η value of 0.12. ③ Veneer-based damping constructions had similar time-temperature superposition(TTS)behaviors to normal viscoelastic polymers.④ The freedom construction showed better damping performance than the constrained system. The aforementioned research findings are helpful for the manufacturing of the damping structural plywood. The research suggests to make damping structural plywood using the freedom construction with the 1.5-2.0 mm thick coating layer.

References

[1] 王进, 张晓君, 丁智平,等.高分子阻尼涂料的研究进展[J]. 高分子通报, 2008(6):8-12. Doi:10.14028/j.cnki.1003-3726.2008.06.008. Wang J, Zhang X J,Ding Z P, et al. Development of polymer damping coatings[J]. Polymer Bulletin, 2008(6):8-12.
[2] 杨雪莲,徐信武,吕吉宁,等.阻尼涂饰意杨胶合板的表面性能[J].林业工程学报,2016,1(1):25-30.Doi:10.13360/j.issn.2096-1359.2016.01.005. Yang X L, Xu X W, Lyu J N, et al. Surface properties of Populus euramevicana plywood covered with damping coatings[J]. Journal of Forestry Engineering, 2016,1(1):25-30.
[3] 谭亮红,周志诚,贺才春. 水性阻尼涂料的动态力学性能研究[J].涂料工业, 2006, 36(11): 5-7. Doi:10.3969/j.issn.0253-4312.2006.11.002. Tan L H, Zhou Z C, He C C. Study on dynamic mechanical properties of water-based damping coatings[J]. Paint & Coatings Industry, 2006, 36(11): 5-7.
[4] 孙广平,贾树盛,朱先勇,等. 热固性丙烯酸酯类核-壳结构互穿网络水性阻尼涂料的动态力学性能[J]. 中国腐蚀与防护学报,2004,24(1):41-44. Doi:10.3969/j.issn.1005-4537.2004.01.010. Sun G P, Jia S S, Zhu X Y, et al. The dynamic mechanical behavior of water-solubilized damping coating with interpenetrating polymer networks of core-shell type of thermoset polyacrylic[J]. Journal of Chinese Society for Corrosion and Protection,2004,24(1):41-44.
[5] 董士峰. 阻尼涂层对悬臂梁动态特性影响的研究[D].沈阳:沈阳航空航天大学, 2015. Dong S F. Study of effect of damping coating on the dynamic characteristics of cantilever[D]. Shenyang:Shenyang Aerospace University, 2015.
[6] 李宝军.基于一种新型粘弹性阻尼材料的约束阻尼结构性能表征及其ANSYS分析[D]. 青岛:青岛理工大学, 2011. Li B J. Research of a constrained damping structure based on a new type of viscoelastic material and ANSYS analysis[D]. Qingdao:Qingdao Technological University, 2011.
[7] 丁国雷. 粘弹阻尼材料表征及约束阻尼结构的阻尼性能研究[D]. 青岛:青岛理工大学, 2012. Ding G L. Characterization of viscoelastic damping material and damping properties of constrained damping structure[D]. Qingdao:Qingdao Technological University, 2012.
[8] 高家武. 高分子材料近代测试技术[M]. 北京:北京航空航天大学出版社, 1994.
[9] 关迎东,孙春龙,李海燕,等.有机高分子阻尼涂料的研究进展[J].涂料工业, 2011,41(9):73-76. Doi:10.3969/j.issn.0253-4312.2011.09.019. Guan Y D, Sun C L, Li H Y, et al. Research progress on organic polymer damping coatings[J].Paint & Coatings Industry, 2011,41(9):73-76.
[10] 张文毓.阻尼材料发展现状与应用进展[J].材料开发与应用,2011,4(2):75-78. Doi:10.3969/j.issn.1003-1545.2011.02.018. Zhang W Y. Progress in development and application of damping materials[J]. Development and Application of Materials, 2011,4(2):75-78.
[11] 金日光, 华幼卿.高分子物理[M].北京:化学工业出版社,1997.
[12] 常冠军. 粘弹性阻尼材料[M]. 北京:国防工业出版社, 2012.
[13] 国防科学技术工业委员会.GB/T 3045—1997.粘弹性阻尼材料通用规范[S]. 北京:中国标准出版社, 1997.
[14] 陈玲, 黄润州, 刘秀娟, 等.木粉、废旧橡胶和高密度聚乙烯复合材料的热解动力学特性[J].南京林业大学学报(自然科学版), 2014, 38(6): 135-140. Doi:10.3969/j.issn.1000-2006.2014.06.026. Chen L, Huang R Z, Liu X J, et al. Thermal decomposition kinetics of wood/rubber/HDPE composites[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(6): 135-140.
[15] George L B, Ival O S. Development of a viscoelastic composition having superior vibration-damping capability[J]. The Journal of the Acoustical Society of America, 1966, 39(4): 666-673.
[16] Ouis D. On the frequency dependence of the modulus of elasticity of wood[J]. Wood Science and Technology, 2002, 36(4): 335-346.
[17] 刘佩英.木塑复合材料动态粘弹性能研究[D].临安:浙江农林大学, 2014. Liu P Y. Study on the dynamic viscoelasticity of wood-plastic composites[D]. Lin'an:Zhejiang A & F University, 2014.

Last Update: 2016-08-30