我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同施肥模式对杨树人工林土壤微生物功能多样性的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年05期
Page:
1-8
Column:
专题报道
publishdate:
2016-09-30

Article Info:/Info

Title:
Effects of different fertilizers regimes on the functional diversity of soil microbes under poplar plantation
Article ID:
1000-2006(2016)05-0001-08
Author(s):
ZHANG Yakun PENG Sai SONG Qianyun ZHANG Wenwen GUO Jiaojiao WANG Guobin RUAN Honghua*
Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
fertilization soil microorganism functional diversity biochar
Classification number :
S718; S154
DOI:
10.3969/j.issn.1000-2006.2016.05.001
Document Code:
A
Abstract:
Effects of different fertilizers on the functional diversity of soil microbes under 8 years old poplar plantation in a coastal area of eastern China were investigated using Biolog-Eco method in this study. We fertilized in June 2013 and set up six fertilizing treatments including no fertilizer(CK), NPK chemical fertilizer(T1), Manure fertilizer(T2), Biochar(T3), NPK fertilizer plus biochar(T4), and manure fertilizer plus biochar(T5). We collected soil samples in August 2014, October 2014, December 2014 and March 2015,respectively. The results showed that: ① Fertilizer applications increased SMBC and SMBN, and T4, T5 treatments increased soil pH, TC(total C), TC/TN and the microbial biomass were significantly higher than other treatments. T3 treatment changed microbial structure. ② Fertilizer applications changed the functional diversity of soil microbial community. T2, T3, T4 and T5 treatments improved soil microbial activity and carbon utilization capacity of soil microbial community; carbon utilization ability of T5 treatment was the highest, while NPK treatment decreased carbon utilization ability. ③ The carbon utilization ability was significantly higher in summer than that in autumn and winter, but the carbon utilization ability of T5 treatment in spring was the highest. It was known that fertilizer applications promoted growth of soil microbes. Except for NPK fertilizer, others improved soil microbial activity, and manure plus biochar mostly changed the functional diversity of soil microbes.

References

[1] 陈琴,方升佐,田野,等.杨树和桤木落叶混合分解对土壤微生物生物量的影响[J].应用生态学报, 2012,23(8):2121-2128. Doi:10.13287/j.1001-9332.2012.0290. Chen Q, Fang S Z, Tian Y, et al. Effects of the decomposition of poplar and alder mixed leaf litters on soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2012, 23(8):2121-2128.
[2] 樊奔,包树敏,蒋永丰,等.连栽杨树林对土壤微生物的影响[J].南京林业大学学报(自然科学版), 2007, 31(5):81-83. Doi:10.3969/j.issn.1000-2006.2007.05.018. Fan B, Bao S M, Jiang Y F, et al. Effects of replanting poplar on soil microorganisms [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(5):81-83.
[3] Zhong W, Gu T, Wang W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity [J]. Plant and Soil, 2009, 326(1): 511-522. Doi: 10.1007/s11104-009-9988-y.
[4] Hu J L, Lin X G, Wang J H, et al. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer[J]. Journal of Soils and Sediments, 2011, 11(2): 271-280. Doi: 10.1007/s11368-010-0308-1.
[5] Chen X, Li Z, Liu M, et al. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years [J]. Journal of Soils and Sediments, 2015, 15(2): 292-301. Doi: 10.1007/s11368-014-0981-6.
[6] Young I M, Crawford J W, Nunan N, et al. Microbial distribution in soils: physics and scaling[J]. Advances in Agronomy, 2008, 100: 81-121. Doi: 10.1016/s0065-2113(08)00604-4.
[7] George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil [J]. Critical Reviews in Biotechnology, 1995, 15(3/4): 257-270. Doi: 10.3109/07388559509147412.
[8] Timonen S, Finlay R D, Olsson S, et al. Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a β-scanner [J]. FEMS Microbiology Ecology, 1996, 19(3): 171-180. Doi: 10.1016/0168-6496(96)00002-5.
[9] Jenkinson D S, Andrew S P S, Lynch J M, et al. The turnover of the organic carbon and nitrogen in soil [J]. Philosophical Transactions of the Royal Society. B: Biological Sciences, 1990, 329(1255): 361-368. Doi: 10.1098/rstb.1990.0177.
[10] 孙凤霞,张伟华,徐明岗,等.长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 2010, 21(11): 2792-2798. Doi: 10.13287/j.1001-9332.2010.0411. Sun F X, Zhang W H, Xu M G, et al. Effects of long-term fertilization on microbial biomass carbon and nitrogen and oncarbon source utilization of microbes in a red soil [J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2792-2798.
[11] Lazcano C, Gómez-Brandón M, Revilla P, et al. Short term effects of organic and inorganic fertilizers on soil microbial community structure and function [J]. Biology and Fertility of Soils, 2013, 49(6):723-733. Doi: 10.1007/s00374-012-0761-7.
[12] Michelsen C F, Pedas P, Glaring M A, et al. Bacterial diversity in greenlandic soils as affected by potato cropping and inorganic versus organic fertilization [J]. Polar Biology, 2014, 37(1): 61-71. Doi: 10.1007/s00300-013-1410-9.
[13] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale [J]. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. Doi: 10.1128/AEM.00335-09.
[14] Marris E. Putting the carbon back: black is the new green[J]. Nature, 2006, 442(7103):624-626. Doi: 10.1038/442624a.
[15] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry 2011, 43(9), 1812-1836. Doi: 10.1016/j.soilbio.2011.04.022.
[16] 姜玉萍,杨晓峰,张兆辉,等. 生物炭对土壤环境及作物生长影响的研究进展[J]. 浙江农业学报,2013,25(2):410-415. Doi: 10.3969/j.issn.1004-1524.2013.02.38. Jiang Y P, Yang X F, Zhang Z H, et al. Progress of the effect of biomass charcoal on soil environment and crop growth [J]. Acta Agriculturae Zhejiangensis, 2013, 25(2):410-415.
[17] 徐凯,徐钰,张梦珊,等. 氮添加对苏北沿海杨树人工林土壤活性有机碳库的影响[J].生态学杂志,2014,33(6):1480-1486. Doi: 10.13292/j.1000-4890.20140327.003. Xu K, Xu Y, Zhang M S, et al. Effects of simulated nitrogen deposition on soil active organic carbon in poplar plantations along Northern Jiangsu coast[J].Chinese Journal of Ecology, 2014, 33(6):1480-1486.
[18] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196: 159-171. Doi: 10.1016/j.foreco.2004.03.018.
[19] 全国农业技术推广服务中心. 土壤分析技术规范[S]. 2版. 北京:中国农业出版社,2006.
[20] 郑华,欧阳志云,方治国,等. Biolog在土壤微生物群落功能多样性研究中的应用[J].土壤学报, 2004,41(3):456-461. Doi: 10.3321/j.issn:0564-3929.2004.03.020. Zheng H, Ouyang Z Y, Fang Z G, et al. Application of biolog to study on soil microbial community functional diversity [J]. Acta Pedologica Sinica, 2004, 41(3):456-461.
[21] Rogers B F, Tate Ш R L. Temporal analysis of the soil microbial community along a toposequence in Pineland soils[J]. Soil Biology and Biochemistry, 2001, 33(10): 1389-1401. Doi: 10.1016/S0038-0717(01)00044-X.
[22] 张燕燕,曲来叶,陈利顶,等. Biolog Eco Plate(TM)实验信息提取方法改进[J].微生物学通报, 2009,36(7):1083-1091. Doi: 10.13344/j.microbiol.china.2009.07.013. Zhang Y Y, Qu L Y, Chen L D, et al. Amendment on information extraction of biolog EcoPlateTM [J]. Microbiology, 2009, 36(7):1083-1091.
[23] Preston-Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-a critique [J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14. Doi: 10.1111/j.1574-6941.2002.tb00990.x.
[24] 田小明,李俊华,王成,等. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响[J]. 土壤,2014,46(3):481-488. Doi: 10.13758/j.cnki.tr.2014.03.016. Tian X M, Li J H, Wang C, et al. Effects of continuous application of bio-organic fertilizer for three years on soil nutrients, microbial biomass and enzyme activity [J]. Soils, 2014, 46(3):481-488.
[25] 张锡洲,王永东,郑子成,等. 氮磷钾肥交互作用对设施土壤盐分含量与离子组成的影响[J]. 四川农业大学学报,2010,28(1):84-89. Doi: 10.3969/j.issn.1000-2650.2010.01.016. Zhang X Z, Wang Y D, Zheng Z C, et al. Effects of interaction among nitrogen, phosphorus and potassium fertilizers on salt content and ion composition in greenhouse soil [J]. Journal of Sichuan Agricultural University, 2010, 28(1):84-89.
[26] 赵晶,冯文强,秦鱼生,等. 不同氮磷钾肥对土壤pH和镉有效性的影响[J]. 土壤学报,2010,47(5):953-961. Doi: 10.16640/j.cnki.37-1222/t.2015.20.236. Zhao J, Feng W Q, Qin Y S, et al. Effects of application of nitrogen, phosphorus and potassium fertilizers on soil pH and cadmium availability [J]. Acta Pedologica Sinica, 2010, 47(5):953-961.
[27] Huang M, Yang L, Qin H, et al. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies[J]. Field Crops Research, 2013, 154(3):172-177. Doi: 10.1016/j.fcr.2013.08.010.
[28] Zwieten V L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1-2): 235-246. Doi: 10.1007/s11104-009-0050-x.
[29] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009(1), 111:81-84. Doi: 10.1016/j.fcr.2008.10.008.
[30] Lehmann J, Silva J P D, Steiner C, et al. Nutrient availability and leaching in an archaeological anthorosol and a ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2), 343-357. Doi: 10.1023/A: 1022833116184.
[31] Lehmann J, Rondon M. Bio-char soil management on highly weathered soils in the humid tropics [C]//Biological Approaches to Sustainable Soil System, 2006:517-530. Doi: 10.1201/9781420017113.ch36.
[32] Lehmann J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144. Doi: 10.1038/447143a.
[33] Liang B, Lehmann J, Bolomon O, et al. Black carbon increases cation exchange capacity in soils [J]. Soil Science Society of America Journal, 2006, 70(5): 1719-1730. Doi: 10.2136/sssaj2005.0383.
[34] 于镇华,元野,刘居东,等. Biolog-Eco解析垦殖与自然恢复黑土微生物群落代谢功能季节变化[J]. 土壤与作物, 2013, 2(3):105-111. Doi: 10.11689/j.issn.2095-2961.2013.03.001. Yu Z H, Yuan Y, Liu J D, et al. Seasonal variations of microbial community functional diversity in cultivated and natural restored mollisols using biolog-eco method[J]. Soil and Crop, 2013, 2(3):105-111.
[35] 孙瑞,孙本华,高明霞,等.长期不同土地利用方式下土土壤微生物特性的变化[J]. 植物营养与肥料学报,2015,21(3):655-663. Doi: 10.11674 /zwyf.2015. 0312. Sun R, Sun B H, Gao M X, et al. Changes of soil microbial characteristics under long-term different land use patterns on an anthropogenic loess soil [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):655-663.
[36] 夏昕,石坤,黄欠如,等.长期不同施肥条件下红壤性水稻土微生物群落结构的变化[J].土壤学报,2015,52(3):697-705. Doi: 10.11766/trxb201407260376. Xia X, Shi K, Huang Q R, et al. The changes of microbial community structure in red paddy soil under long-term fertilization [J]. Acta Pedologica Sinica, 2015, 52(3):697-705.
[37] Sohi S P, Krull E, Lopez-Capel E. A review of biochar and its use and function in soil [J]. Advances in Agronomy, 2010, 105, 47-82. Doi: 10.1016/s0065-2113(10)05002-9.
[38] Glaser B, Lehmann J, Zech W. Amenliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review [J]. Biology and Fertility of Soils, 2002, 35(4), 219-230. Doi: 10.1007/s00374-002-0466-4.
[39] Chen J H, Liu X Y, Zheng J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71:33-34. Doi: 10.1016/j.apsoil.2013.05.003.
[40] Rousk J, Brooks P C, Bääth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology, 2009, 75(6), 1589-1596.Doi: 10.1128/AEM.02775-08.
[41] Tang J C, Zhu W Y, Kookana R, et al. Characteristics of biochar and its application in remediation of contaminated soil [J]. Journal of Bioscience and Bioengineering, 2013, 116(6): 653-659. Doi: 10.1016/j.jbiosc.2013.05.035.
[42] Ippolito J A, Laird D A, Busscher W J. Environmental benefits of biochar [J]. Journal of Environmental Quality, 2012, 41(4): 967-972. Doi: 10.2134/jeq2012.0151.
[43] 陈伟,周波,束怀瑞. 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响[J]. 中国农业科学,2013,46(18):3850-3856. Doi: 10.3864/j.issn.0578-1752.2013.18.014. Chen W, Zhou B, Shu H R. Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis Rehd [J]. Scientia Agriculture Sinica, 2013, 46(18):3850-3856.
[44] 杨宁,杨满元,雷玉兰,等.紫色土丘陵坡地土壤微生物群落的季节变化[J].生态环境学报, 2015,24(1):34-40. Doi: 10.16258/j.cnki.1674-5906.2015.01.006. Yang N, Yang M Y, Lei Y L, et al. Seasonal variations of soil microbial communities on sloping-land with purple soils[J]. Ecology and Environmental Sciences, 2015, 24(1):34-40.

Last Update: 2016-10-30