我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同施肥模式对杨树人工林土壤微生物生物量C、N、P的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年05期
Page:
9-13
Column:
专题报道
publishdate:
2016-09-30

Article Info:/Info

Title:
Effects of different fertilization regimes on soil microbial biomass C, N, P under poplar plantation
Article ID:
1000-2006(2016)05-0009-05
Author(s):
WANG Guobing1 GUO Jiaojiao12 CAO Guohua3 XU Changbai3 RUAN Honghua1*
1.Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry Uninvesity, Nanjing 210037, China;
2.Hebei Academy of Forestry Science, Shijiazhuang 050072, China;
3.Dongtai City Forest Farm of Jiangsu Province, Dongtai 224200, China
Keywords:
soil microbial biomass fertilization regime poplar plantation
Classification number :
S718; S154
DOI:
10.3969/j.issn.1000-2006.2016.05.002
Document Code:
A
Abstract:
In order to learn the effects of different fertilization regimes on soil microbial biomass C, N, P under poplar plantations, six different treatments(NPK compound fertilizer, T1; organic fertilizer, T2; biochar, T3; NPK compound fertilizer + biochar, T4; organic fertilizer + biochar, T5; control treatment, CK)were set up under the poplar plantation of 5 years old in Dongtai Forest Centre of Jiangsu Province. The fertilization treatments were completed in June 2012, and the soil samples from different sites were collected every two months during August 2012 to June 2013. The results showed that: Five different fertilization regimes significantly improved soil microbial biomass C and N content in three different soil layers, but exerted less effect on soil microbial biomass P, only T1 treatment significantly increased soil microbial biomass P content in three different soil layers, and T4 treatment significantly increased soil microbial biomass P content in 0-10 cm soil layer compared with control treatment. T2, T4 and T5 treatments tended to reduce soil microbial biomass C/N ratio in 0-10 cm and ≥10-25 cm soil layer, but only T5 treatment significantly reduced it in 0-10 cm soil layer comparing with CK. However, T1, T2, T4 and T5 treatments significantly reduced soil microbial biomass C/N ratio in ≥25-40 cm soil layer, suggesting that the improvement effect of different fertilization regimes on supply capacity and plant availability of soil N increased with the increase of soil depth. T4 treatment performed best in increasing soil microbial biomass C, N, P of poplar plantation, at the same time, can improve supply capacity and plant availability of soil N, therefore it was the optimal fertilization regime.

References

[1] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报,2008, 19(10): 2308-2316. Fang S Z. Silviculture of poplar plantation in China: a review[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308-2316.
[2] 刘福德, 姜岳忠, 王华田, 等. 杨树人工林连作效应的研究[J]. 水土保持学报, 2005, 19(2): 102-105. Doi:10.3321/j.issn:1009-2242.2005.02.027. Liu D F, Jiang Y Z, Wang H T, et al. Effect of continuous cropping on poplar plantation[J]. Journal of Soil and Water Conservation, 2005, 19(2): 102-105.
[3] 唐万鹏, 李吉跃, 胡兴宜, 等. 江汉平原杨树人工林连栽对林地土壤质量的影响[J]. 华中农业大学学报, 2009, 28(6): 750-755. Doi:10.3321/j.issn:1000-2421.2009.06.023. Tang W P, Li J Y, Hu X Y, et al. Impact of successive cropping of poplar plantation on soil quality in Jianghan Plain[J]. Journal of Huazhong Agricultural University, 2009, 28(6): 750-755.
[4] 段春华, 翟建平, 杜立民. 杨树人工林地力衰退研究现状及防止措施[J]. 山东林业科技, 2009, 39(2): 97-101. Doi:10.3969/j.issn.1002-2724.2009.02.031. Duan C H, Zhai J P, Du L M. Research on soil fertility decline status and preventing measures in poplar plantations[J]. Journal of Shandong Forestry Science and Technology, 2009, 39(2): 97-101.
[5] 李晓宇, 杨成超, 彭建东. 杨树人工林地力衰退研究现状与进展[J]. 辽宁林业科技, 2011(6): 39-42. Doi:10.3969/j.issn.1001-1714.2011.06.013. Li X Y, Yang C C, Peng J D. Review on soil fertility decline in poplar plantations[J]. Liaoning Forestry Science and Technology, 2011(6): 39-42.
[6] 陈琴, 方升佐, 田野. 杨树和桤木落叶混合分解对土壤微生物生物量的影响[J]. 应用生态学报, 2012, 23(8): 2121-2128. Chen Q, Fang S Z, Tian Y. Effects of the decomposition of poplar and alder mixed leaf litters on soil microbial biomass[J]. Chinese Journal of Applied Ecology, 2012, 23(8):2121-2128.
[7] 于斌. 苏北杨树速生丰产配方施肥的试验研究[D]. 南京:南京林业大学, 2004. Yu B. Experimental study on formulated fertilization for fast-growing in poplar plantations of North Jiangsu[D]. Nanjing:Nanjing Forestry University, 2004.
[8] 周林. 杨树林带定量施肥效果的研究[J]. 江苏林业科技, 2013, 40(1): 13-15. Doi:10.3969/j.issn.1001-7380.2013.01.004. Zhou L. Effects of quantitative fertilization on poplar plantations[J]. Journal of Jiangsu Forestry Science and Technology, 2013, 40(1): 13-15.
[9] Zhong W, Gu T, Wang W, et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity[J].Plant Soil, 2009, 326(1):511-522. Doi:10.1007/s11104-009-9988-y.
[10] Hu J, Lin X, Wang J, et al. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer[J]. J Soils Sediments,2010, 11(2):271-280. Doi:10.1007/s11368-010-0308-1.
[11] Chen X, Li Z, Liu M, et al. Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years[J].J Soils Sediments, 2014,15(2):292-301. Doi:10.1007/s11368-014-0981-6.
[12] 赵庆雷, 王凯荣, 马加清, 等. 长期不同施肥模式对稻田土壤磷素及水稻磷营养的影响[J]. 作物学报, 2009, 35(8): 1539-1545. Doi:10.3724/SP.J.1006.2009.01539. Zhao Q L, Wang K R, Ma J Q, et al. Effects of long-term application of different fertilizer patterns on rice paddy soil phosphorus and rice phosphorus nutrition[J]. Acta Agronomica Sinica, 2009, 35(8): 1539-1545.
[13] 王灿,王德建,孙瑞娟, 等. 长期不同施肥方式下土壤酶活性与肥力因素的相关性[J]. 生态环境, 2008, 17(2): 688-692. Doi:10.3969/j.issn.1674-5906.2008.02.047. Wang C, Wang D J, Sun R J, et al. The relationship between soil enzyme activities and soil nutrients by long-term fertilizer experiments[J]. Ecology and Environment, 2008, 17(2): 688-692.
[14] 李昌新. 长期施肥对红壤旱地玉米生产力和土壤肥力的影响及其机制研究[D]. 南京:南京农业大学, 2009. Li C X. Effects of long-term fertilization on corn productivity and soil fertility as well as its mechanisms under upland red soil in subtropical China[D]. Nanjing: Nanjing Agriculture University, 2009.
[15] 薛菁芳, 高艳梅, 汪景宽, 等. 土壤微生物量碳氮作为土壤肥力指标的探讨[J]. 土壤通报, 2007, 38(2): 247-250. Doi:10.3321/j.issn:0564-3945.2007.02.009. Xue J F, Gao Y M, Wang J K, et al. Microbial biomass carbon and nitrogen as an indicator for evaluation of soil fertility[J]. Chinese Journal of Soil Science, 2007, 38(2): 247-250.
[16] 王利利, 董民, 张璐, 等. 不同碳氮比有机肥对有机农业土壤微生物生物量的影响[J]. 中国生态农业学报, 2013, 21(9): 1073-1077. Doi:10.3724/SP.J.1011.2013.01073. Wang L L, Dong M, Zhang L, et al. Effects of organic manures with different carbon-to-nitrogen ratios on soil microbial biomass of organic agriculture[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1073-1077.
[17] Brookes P C, Aader L, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen[J]. Soil Biology and Biochemistry, 1985, 17: 837-842. Doi:10.1016/0038-0717(85)90144-0.
[18] Vance E D, Brooks P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
[19] 吴金水, 肖和艾, 陈桂秋, 等. 旱地土壤微生物磷测定方法研究[J]. 土壤学报, 2003, 40(1): 70-78. Doi:10.3321/j.issn:0564-3929.2003.01.010. Wu J S, Xiao H A, Chen G Q, et al. Measurement of microbial biomass-P in upland soils in China[J]. Acta Pedologica Sinica, 2003, 40(1): 70-78.
[20] 王国兵, 金裕华, 王丰, 等. 武夷山不同海拔植被带土壤微生物量磷的时空变异[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 44-48. Doi:10.3969/j.issn.1000-2006.2011.06.009. Wang G B, Jin Y H, Wang F, et al. Temporal and spatial variations of soil microbial biomass P under different vegetations along an elevation gradients in Wuyi Mountains in southeast of China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(6): 44-48.
[21] 陈安磊, 王凯荣, 谢小立, 等. 不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应[J]. 应用生态学报, 2007, 18(12):2733-2738. Chen A L, Wang K R, Xie X L, et al. Responses of microbial biomass P to the changes of organic C and P in paddy soils under different fertilization systems[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2733-2738.
[22] 孙凤霞, 张伟华, 徐明岗, 等. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 2010, 21(11): 2792-2798. Sun F X, Zhang W H, Xu M G, et al. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2792-2798.
[23] 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1): 89-96. Doi:10.3321/j.issn:0564-3929.2002.01.013. Xu Y C, Shen Q R, Ran W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping[J]. Acta Pedologica Sinica, 2002, 39(1): 89-96.
[24] 任全. 茶园不同培肥措施对土壤生境及微生物的影响[D]. 长沙:湖南农业大学, 2007. Ren Q. Influence of different fertility measure on soil habitat and microorganism in tea garden[D].Changsha: Hunan Agriculture University, 2007.
[25] 毕明丽, 宇万太, 姜子绍, 等. 施肥和土壤管理对土壤微生物生物量碳、氮和群落结构的影响[J]. 生态学报, 2010, 30(1): 0032-0042. Bi M L, Yu W T, Jiang Z S, et al. Effects of fertilization and soil management on microbial biomass and community[J]. Acta Ecologica Sinica, 2010, 30(1): 0032-0042.
[26] Lazcano C, Gómez-Brandón M, Revilla P, et al. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function[J].Biol Fertil Soils, 2012, 49(6):723-733. Doi:10.1007/s00374-012-0761-7.
[27] 刘守龙, 肖和艾, 童成立, 等. 亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J]. 农业现代化研究, 2003,24(4): 278-283. Doi:10.3969/j.issn.1000-0275.2003.04.011. Liu S L, Xiao H A, Tong C L, et al. Microbial biomass C, N and P and their responses to application of inorganic and organic fertilizers in subtropical paddy soils[J]. Research of Agricultural Modernization, 2003, 24(4): 278-283.

Last Update: 2016-10-30