我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

生物炭对杨树人工林土壤微生物量及碳源代谢多样性的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年05期
Page:
14-20
Column:
专题报道
publishdate:
2016-09-30

Article Info:/Info

Title:
Effect of biochar on soil microbial biomass and the diversity of carbon source metabolism in poplar plantation
Article ID:
1000-2006(2016)05-0014-07
Author(s):
XU Wenhuan1 DENG Fangfang1 FANG Shuiyuan1 WANG Guobing1 RUAN Honghua1* CAO Guohua2
1.Co-Innovation Center for Sustainable Forestry in Southern China,College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
2. Dongtai City Forest Farm of Jiangsu Province, Dongtai 224200, China
Keywords:
biochar poplar plantation microbial biomass metabolic diversity of carbon seasonal variations
Classification number :
S154
DOI:
10.3969/j.issn.1000-2006.2016.05.003
Document Code:
A
Abstract:
Biochar is evaluated as a means to improve soil physicochemical properties and to mitigate climate change, which has received widespread attention. This study targeted on poplar plantation in Dongtai in Jiangsu Province and designed four different levels of biochar: CK(0), T1(40 t/hm2), T2(80 t/hm2)and T3(120 t/hm2)to investigate how biochar and seasonal changes affect soil physicochemical parameters, microbial biomass and metabolic activity of carbon sources. The result showed as follow: soil moisture content decreased after the addition of biochar, while soil pH significantly increased. Biochar caused the decrease of SMBN(soil microbial biomass nitrogen), and its values presented significant seasonal changes: the values in winter and spring were higher than that in summer and autumn; whereas biochar did not change the seasonal SMBC(soil microbial biomass carbon)in this study but it presented the significant seasonal changes. High level of biochar(T3)improved the AWCD(average well color change)value of microbes on Eco-plate, but exerted no effect on diversity of carbon source metabolism. However, compared with the effects of biochar, seasonal changes exerted more dramatic effect on microbial metabolic patterns.

References

[1] Change IPOC. Climate change 2007: The physical science basis [J]. Agenda, 2007, 6(7): 333.
[2] Glaser B, Haumaier L, Guggenberger G, et al. The ‘Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften, 2001, 88(1): 37-41.
[3] Marris E. Putting the carbon back:black is the new green[J]. Nature, 2006, 442(7103): 624-626. Doi:10.1038/442624a.
[4] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems: a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[5] Ishii T, Kadoya K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development [J]. Engei Gakkai Zasshi, 1994, 63(3): 529-35.
[6] Ogawa M, Okimori Y, Krull E, et al. Pioneering works in biochar research, Japan [J]. Soil Research, 2010, 48(7): 489-500.
[7] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-a review [J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-36.
[8] Lehmann J, Sohi S. Comment on “Fire-derived charcoal causes loss of forest humus”[J]. Science, 2008, 321(5894): 1295. Doi:10.1126/science.1160005.
[9] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil- concepts and mechanisms[J]. Plant Soil, 2007, 300(1): 9-20. Doi:10.1007/s11104-007-9391-5.
[10] Jenkinson D S, Andrew S P S, Lynch J M, et al. The turnover of organic carbon and nitrogen in soil[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1990, 329(1255): 361-368. Doi:10.1098/rstb.1990.0177.
[11] Gross K, Cardinale B J, Fox J W, et al. Speciesrichness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments[J]. Am Nat, 2014, 183(1): 1-12. Doi:10.1086/673915.
[12] Liu B, Li Y, Zhang X, et al. Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesTM[J]. European Journal of Soil Biology, 2015, 68: 69-76. Doi:10.1016/j.ejsobi.2015.01.002.
[13] HackettC A, Griffiths B S. Statistical analysis of the time-course of biolog substrate utilization[J]. Journal of Microbiological Methods, 1997, 30(1): 63-69. Doi:10.1016/s0167-7012(97)00045-6.
[14] Garau G, Castaldi P, Santona L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil [J]. Geoderma, 2007, 142(1-2): 47-57.
[15] Garland J. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300. Doi:10.1016/s0168-6496(97)00061-5.
[16] Liu F, Wu J, Ying G G, et al. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline[J]. Appl Microbiol Biotechnol, 2012, 95(6): 1615-1623. Doi:10.1007/s00253-011-3831-0.
[17] 刘艳, 周国逸, 褚国伟, 等. 鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态[J]. 生态环境, 2005, 14(1): 81-85. Doi:10.3969/j.issn.1674-5906.2005.01.017. Liu Y, Zhou G Y, Chu G W, et al. Seasonal dynamics of soil acidity and nutrient contents under coniferous and broad-leaved mixed forest at dinghushan[J]. Ecology and Environment, 2005, 14(1): 81-85. Doi:10.3969/j.issn.1674-5906.2005.01.017.
[18] 曾爱, 廖允成, 张俊丽, 等. 生物炭对塿土土壤含水量、有机碳及速效养分含量的影响[J]. 农业环境科学学报, 2013, 32(5): 1009-1015.
[19] Jones D L, Rousk J, Edwards-Jones G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 2012, 45: 113-124. Doi:10.1016/j.soilbio.2011.10.012.
[20] Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J].Plant Soil, 2009, 327(1): 235-246. Doi:10.1007/s11104-009-0050-x.
[21] Rogers B F, Tate R L. Temporal analysis of the soil microbial community along a toposequence in pineland soils[J]. Soil Biology and Biochemistry, 2001, 33(10): 1389-1401. Doi:10.1016/s0038-0717(01)00044-x.
[22] 仇少君, 彭佩钦, 刘强, 等. 土壤微生物生物量氮及其在氮素循环中作用[J]. 生态学杂志, 2006, 25(4): 443-448. Qiu S J, Peng P Q, Liu Q, et al. Soil microbial biomass nitrogen and its role in nitrogen cycling[J]. Chinese Journal of Ecology, 2006, 25(4): 443-448.
[23] 李世清, 任书杰, 李生秀. 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[J]. 植物营养与肥料学报, 2004, 10(1): 18-23. Doi:10.3321/j.issn:1008-505X.2004.01.004. Li S Q, Ren S J, Li S X. Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature[J]. Plant Nutrition and Fertilizer Science, 2004, 10(1): 18-23. Doi:10.3321/j.issn:1008-505X.2004.01.004.
[24] 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J]. 土壤, 1997, 29(2): 61-69.
[25] Hamel C, Hanson K, Selles F, et al. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie[J]. Soil Biology and Biochemistry, 2006, 38(8): 2104-2116. Doi:10.1016/j.soilbio.2006.01.011.
[26] 张德明, 陈章和. 白云山土壤微生物的季节变化及其对环境污染的反应[J]. 生态科学, 1998, 17(1): 40-45.
[27] Bruun E. Application of fast pyrolysis biochar to a loamy soil [D]. Lyngby: Technical University of Denmark, 2011.
[28] Zavalloni C, Alberti G, Biasiol S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study [J]. Applied Soil Ecology, 2011, 50:45-51.
[29] Lauber C L, Hamady M, Knight R, et al.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Appl Environ Microbiol, 2009, 75(15): 5111-5120. Doi:10.1128/AEM.00335-09.
[30] Hammer E C, Balogh-Brunstad Z, Jakobsen I, et al. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces[J]. Soil Biology and Biochemistry, 2014, 77: 252-260. Doi:10.1016/j.soilbio.2014.06.012.
[31] Khodadad C L M, Zimmerman A R, Green S J, et al. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43(2): 385-392. Doi:10.1016/j.soilbio.2010.11.005.
[32] Calbrix R, Barray S, Chabrerie O, et al. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land[J]. Applied Soil Ecology, 2007, 35(3): 511-522. Doi:10.1016/j.apsoil.2006.10.007.
[33] 张德强, 叶万辉, 余清发, 等. 鼎湖山演替系列中代表性森林凋落物研究[J]. 生态学报, 2000, 20(6): 938-944.
[34] O'Neill B, Grossman J, Tsai M T, et al. Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification [J]. Microb Ecol, 2009, 58(1): 23-35.
[35] BruunE W, Müller-Stöver D, Ambus P, et al. Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry[J]. European Journal of Soil Science, 2011, 62(4): 581-589. Doi:10.1111/j.1365-2389.2011.01377.x.
[36] KolbS E, Fermanich K J, Dornbush M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4): 1173. Doi:10.2136/sssaj2008.0232.

Last Update: 2016-10-30