我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

短丝木犀转录组测序及类胡萝卜素生物合成相关基因表达分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年05期
Page:
21-28
Column:
研究论文
publishdate:
2016-09-30

Article Info:/Info

Title:
De novo transcriptome sequencing and analysis of carotenoids biosynthesis related gene expression in Osmanthus serrulatus
Article ID:
1000-2006(2016)05-0021-08
Author(s):
CHEN Lin1 LI Longna2 DAI Yaping1 YANG Guodong1
1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
2.Virtual Simulation Experiment Teaching Center of Agricultural Biology, Nanjing Agricultural University, Nanjing 210095, China
Keywords:
Osmanthus serrulatus aromatic plant transcriptome sequencing unigenes DEGs qRT-PCR
Classification number :
S685.13; Q781
DOI:
10.3969/j.issn.1000-2006.2016.05.004
Document Code:
A
Abstract:
Osmanthus serrulatus is an endemic species of China with high potentiality in the practical application. To investigate the transcriptome profiling of this species, a high throughput RNA sequencing via Illumina HISeqTM2000 platforms was applied on the flowers and leaf buds of O. serrulatus. Amounting to 16.94 G of clean reads was generated from the sequencing, and then was de novo assembled via trinity. The draft transcriptome assembly consisted of 92 798 unigenes, of which 35 851 unigenes were successfully annotated against the following public databases: Nr, Nt, Swiss-Prot, GO, COG, KEGG and PFAM. The KEGG results showed that a total of 8 779 unigenes could be mapped onto 262 pathways, among which 53 and 335 unigenes involved in the biosynthesis of floral pigment and of fragrance, respectively. In addition, differential gene expression patterns between flowers and leaf buds of O. serrulatus were confirmed by the results of qRT-PCR on 6 genes that are related to the biosynthesis of carotenoid. Our study provides a valuable resource for future studies aimed at identifying the molecular mechanisms of synthesizing flora pigment and fragrance on O. serrulatus.

References

[1] 向其柏, 刘玉莲. 中国桂花品种图志 [M]. 杭州:浙江科学技术出版社, 2008.
[2] 陈俊华, 何飞, 李建彬, 等. 东拉野桂花群落物种多样性及乔木优势种生态位初步研究[J]. 四川林业科技, 2007, 28(4): 48-51. Doi:10.3969/j.issn.1003-5508.2007.04.010. Chen J H, He F, Li J B, et al. Primary research on species diversity and niche characteristics of dominant arbor species in Osmanthus serrulatus community [J]. Journal of Sichuan Forestry Science and Technology, 2007, 28(4): 48-51.
[3] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 17(25): 3389-3402.
[4] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. Doi:10.1186/1471-2105-12-323.
[5] Garg R, Patel R K, Jhanwar S, et al. Gene discovery and tissue-specific transcriptome analysis in chickpea with Massively parallel pyrosequencing and web resource development[J]. Plant Physiology, 2011(4): 1661-1678. Doi:10.1104/pp.111.178616.
[6] Wang Y, Zeng X, Iyer N J, et al. Exploring the switchgrass transcriptome using second-generation sequencing technology[J]. PLoS One, 2012, 7(3): e34225.
[7] Parchman T L, Geist K S, Grahnen J A, et al. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery[J]. BMC Genomics, 2010, 11: 180. Doi:10.1186/1471-2164-11-180.
[8] Hsiao Y Y, Chen Y W, Huang S C, et al. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids[J]. BMC Genomics, 2011, 12: 360. Doi:10.1186/1471-2164-12-360.
[9] Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:266.
[10] Yang Y, Xu M, Luo Q, et al. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing[J].Gene, 2014, 534(2): 155-162. Doi:10.1016/j.gene.2013.10.073.
[11] Wu Z J, Li X H, Liu Z W, et al. De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis[J]. BMC Plant Biol, 2014, 14: 277. Doi:10.1186/s12870-014-0277-4.
[12] Han X J, Wang Y D, Chen Y C, et al. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba[J]. PLoS One, 2013, 8(10): e76890. Doi:10.1371/journal.pone.0076890.
[13] Mu H N, Li H G, Wang L G, et al. Transcriptome sequencing and analysis of sweet osmanthus(Osmanthus fragrans Lour.)[J]. GenesGenom, 2014, 36(6): 777-788. Doi:10.1007/s13258-014-0212-y.
[14] Liang T T, Ma Y, Guo J, et al. Transcriptome sequencing and analysis of wild pear(Pyrus hopeiensis)using the Illumina platform[J]. Arab J Sci Eng, 2015, 41(1): 45-53. Doi:10.1007/s13369-015-1725-7.
[15] Tanaka N, Fujita M, Handa H, et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments[J].Mol Genet Genomics, 2004, 271(5): 566-576. Doi:10.1007/s00438-004-1002-z.
[16] HansonM R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development[J]. Plant Cell, 2004, 16(S1): S154-S169. Doi:10.1105/tpc.015966.
[17] 邓敏捷, 董焱鹏, 赵振利, 等. 基于Illumina高通量测序的泡桐转录组研究[J]. 林业科学, 2013(6): 30-36. Doi:10.11707/j.1001-7488.20130605. Deng M J, Dong Y P, Zhao Z L, et al. Illumina-based de novo sequencing and characterization of the transcriptome of Paulownia plant[J].Scientia Silvae Sinicae, 2013, 49(6): 30-36.
[18] Hou R, Bao Z, Wang S, et al. Transcriptome sequencing and de novo analysis for Yesso scallop(Patinopecten yessoensis)using 454 GS FLX[J]. PLoS One, 2011, 6(6): e21560. Doi:10.1371/journal.pone.0021560.
[19] 刘海. 基于高通量测序的木麻黄转录组分析[D]. 福州:福建农林大学, 2014.
[20] Wong C E, Singh M B, Bhalla P L. The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process[J]. PLoS One, 2013, 8(6): e65319. Doi:10.1371/journal.pone.0065319.
[21] Zhang H N, Wei Y Z, Shen J Y, et al. Transcriptomic analysis of floral initiation in litchi(Litchi chinensis Sonn.)based on de novo RNA sequencing[J]. Plant Cell Rep, 2014, 33(10): 1723-1735. Doi:10.1007/s00299-014-1650-3.
[22] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J].Nature, 2001, 409(6819): 525-529. Doi:10.1038/35054083.
[23] Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J].Mol Phylogenet Evol, 2003, 29(3): 464-489. Doi:10.1016/s1055-7903(03)00207-0.
[24] 霍培, 季静, 王罡, 等. 植物类胡萝卜素生物合成及功能[J]. 中国生物工程杂志. 2011, 31(11): 107-113. Huo P, Ji J, Wang G, et al. Biosynthesis and function of carotenoid in plant[J]. China Biotechnology, 2011,31(11): 107-113.
[25] Nielsen K, Lewis D, Morgan E. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca(Hook)[J].Euphytica, 2003,130(1): 25-34.
[26] Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Molecular Biology, 2001, 45(3): 281-293.
[27] Chiou C Y, Pan H A, Chuang Y N, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars[J]. Planta, 2010, 232(4): 937-948. Doi:10.1007/s00425-010-1222-x.
[28] Han Y, Wang X, Chen W, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans[J]. Tree Genetics & Genomes, 2013, 10(2): 329-338. Doi:10.1007/s11295-013-0687-8.
[29] Kaiser R. Carotenoid-derived aroma compounds in flower scents[C] // Winterhalter P. Carotenoid-derived aroma compounds(ACS Symposium). Washington, D.C.: American Chemical Society, 2000:160-182.
[30] Li F, Huang Q. Analysis of fragrance composition in three cultivars of Osmanthus fragrans Albus group flower by gas chromatography-mass spectrometry[J]. Wuhan University Journal of Natural Sciences, 2011, 16(4): 342-348. Doi:10.1007/s11859-011-0761-8.
[31] Han Y, Chen W, Yang F, et al. cDNA-AFLP analysis on 2 Osmanthus fragrans cultivars with different flower color and molecular characteristics of OfMYB1 gene[J]. Trees, 2015, 29(3): 931-940. Doi:10.1007/s00468-015-1175-6.
[32] Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation in chrysanthemum petals[J]. Plant Physiol, 2006, 142(3): 1193-1201. Doi:10.1104/pp.106.087130.

Last Update: 2016-10-30