我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于ICESat-GLAS波形数据估测森林郁闭度(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年05期
Page:
99-106
Column:
研究论文
publishdate:
2016-09-30

Article Info:/Info

Title:
Estimation of forest canopy density based on ICESat-GLAS waveform data
Article ID:
1000-2006(2016)05-0099-08
Author(s):
QIU Sai XING Yanqiu* TIAN Jing DING Jianhua
College of Technology and Engineering, Northeast Forestry University, Harbin 150040, China
Keywords:
LiDAR GLAS waveform forest canopy density echo energy
Classification number :
S771.8
DOI:
10.3969/j.issn.1000-2006.2016.05.016
Document Code:
A
Abstract:
Using the Wangqing forestry area in Jilin Province as a study area, the potential ability of GLAS waveform for estimating forest canopy density was explored in this study. The GLAS waveform was smoothed and fitted by Gaussian low pass filters, and then waveform parameters(i.e. I and ec)were extracted from the smoothed GLAS waveform. The single-variable model and multi-variable model were developed with the two waveform parameters, respectively. The results showed that the single-variable model built with I were superior to that developed with ec. The accuracy of multi-variable models was better than that of the single-variable models. For broad-leaf forest, the R2adj and RMSE(σRMSE)were 0.72 and 0.07, respectively, and the validation results were R2adj=0.74 and σRMSE=0.06. The model accuracy of coniferous forest was the highest(R2adj=0.80, σRMSE=0.10)with validation results of R2adj=0.76 and σRMSE=0.11. The model accuracy of the mixed forest was higher than the broad-leaf forest, but lower than the coniferous forest. The values of R2adj and RMSE were 0.75 and 0.09, respectively, with the validation results of R2adj=0.71 and σRMSE=0.07. The results demonstrate that GLAS waveforms have the capability to estimate the forest canopy density, and the estimation accuracy can be improved by combining I and ec.

References

[1] 杜晓明,蔡体久,琚存勇.采用偏最小二乘回归方法估测森林郁闭度[J].应用生态学报,2008,19(2):273-277. Du X M, Cai T J, Ju C Y. Estimation of forest canopy closure by using partial least square regression[J].Chinese Journal of Applied Ecology, 2008, 19(2): 273-277.
[2] 朱教君,康宏樟,胡理乐.应用全天空照片估计林分透光孔隙度(郁闭度)[J].生态学杂志,2005,24(10):1234-1240. Zhu J J, Kang H Z, Hu L L. Estimation on optical porosity or canopy closure for a forest stand with hemispherical images[J].Chinese Journal of Ecology, 2005, 24(10): 1234-1240.
[3] 李崇贵,蔡体久.森林郁闭度对蓄积量估测的影响规律[J].东北林业大学学报,2006,34(1):15-17.Doi:10.3969/j.issn.1000-5382.2006.01.006. Li C G, Cai T J. Effect of forest canopy density on stock volume estimation[J]. Journal of Northeast Forestry University, 2006, 34(1): 15-17.
[4] Pu R, Gong P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sensing of Environment, 2004, 91(2): 212-224.Doi:10.1016/j.rse.2004.03.006.
[5] 杨存建,倪静,周其林,等.不同林分郁闭度与遥感数据的相关性[J].生态学报,2015,35(7):2119-2125.Doi:10.5846/stxb201306101626. Yang C J, Ni J, Zhou Q L, et al. Correlation analysis of canopy density with remote sensing data for different forest stand[J]. Acta Ecologica Sinica, 2015, 35(7): 2119-2125.
[6] 谭炳香.高光谱遥感森林类型识别及其郁闭度定量估测研究[D].北京:中国林业科学研究院,2006. Tan B X. extraction of forest types and estimation of forest canopy closure from hyperspectral remote sensing[D]. Beijing: Chinese Academy of Forestry, 2006.
[7] Lefsky M A, Hudak A T, Cohen W B, et al. Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest[J]. Remote Sensing of Environment, 2005, 95(4): 532-548.Doi:10.1016/j.rse.2005.01.010.
[8] Koch B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 581-590.Doi:10.1016/j.isprsjprs.2010.09.001.
[9] 穆喜云,张秋良,刘清旺,等.基于机载 LiDAR 数据的林分平均高及郁闭度反演[J].东北林业大学学报,2015,43(9):84-89.Doi:10.3969/j.issn.1000-5382.2015.09.017. Mu X Y, Zhang Q L, Liu Q W, et al. Inversion of forest height and canopy closure using airborne LiDAR data[J]. Journal of Northeast Forestry University, 2015, 43(9):84-89.
[10] Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006, 104(1): 50-61.
[11] Schutz B E, Zwally H J, Shuman C A, et al. Overview of the ICESat Mission[J]. Geophysical Research Letters, 2005, 32(21): 97-116.Doi:10.1029/2005g1024009.
[12] García M, Popescu S, Riaño D, et al. Characterization of canopy fuels using ICESat/GLAS data[J]. Remote sensing of Environment, 2012, 123: 81-89.
[13] Xing Y, Gier A D, Zhang J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: a case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation, 2010, 12(5): 385-392.Doi:10.1016/j.jag.2010.04.010.
[14] 邢艳秋,王立海.基于ICESat—GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例[J].武汉大学学报(信息科学版),2009,34(6):696-700. Xing Y Q, Wang L H.ICESat-GLAS full waveform based study on forest canopy height retrieval in slope area-a case study of forests in Changbai Mountains, Jilin[J].Journal of Wuhan University(Information Science Edition),2009, 34(6): 696-700.
[15] Lefsky M A, Harding D J, Michael K, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophysical Research Letters, 2005, 32(22), Doi:10.1029/2005GL025518.
[16] Sun G, Ranson K J, Kimes D S, et al. Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data[J]. Remote Sensing of Environment, 2008, 112(1): 107-117.Doi:10.1016/j.rse.2006.09.036.
[17] Harding D J, Carabajal C C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure[J]. Geophysical Research Letters, 2005, 32(21), Doi: 10.1029/2005GL023471.

Last Update: 2016-10-30