我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同龄组天然常绿阔叶林与杉木人工林林下草本层生物量分配特征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年05期
Page:
170-176
Column:
研究简报
publishdate:
2016-09-30

Article Info:/Info

Title:
Above and below ground biomass allocation on herb layer of natural evergreen broad-leaved forest and Chinese fir plantation with different age classes
Article ID:
1000-2006(2016)05-0170-07
Author(s):
LI Jing1 WANG Linghong2 CHENG Dongliang13XU Chaobin 1ZHANG Zhongrui1 WU Yonghong1ZHONG Quanlin13*
1. College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;
2. Ji'an County Forestry Bureau of Jiangxi Province, Ji'an 343100, China;
3. State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, Fujian Provincial Key Laboratory of Plant Ecophysiology Fujian Normal University, Fuzhou 350007, China
Keywords:
herb layer vegetation biomass allocation growth index natural evergreen broad-leaved forest Chinese fir plantation
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.2016.05.027
Document Code:
A
Abstract:
To explore the above and below ground biomass allocation patterns of herb layer, two different forest type including the natural evergreen broad-leaved forest and Chinese fir plantation with various age classes in Fujian Province were analyzed using the logarithmic equation: lg y=b+a lg x, and the isometric above and below ground biomass allocation theory was also detected using the above and below ground biomass of herb layer. The results indicated that the herbaceous layer biomass of natural evergreen broad-leaved forest decreased with the increasing of stand age. On the contrary, in Chinese fir plantations, the total biomass of herb layer was the highest in the mature forest stage, and the total biomass was the minimum in the pre-mature forest. Additionally, the ratios of above to below ground biomass were different for the two forest types. In different forest age, the scaling exponents(a)of above and below ground biomass in natural evergreen broad-leaved forest herb layer were 0.785, 0.757, 0.760 and 1.232, respectively. The above ground biomass scaled isometrically with below ground biomass of young and mature forest herb layers in natural evergreen broad-leaved forest, with the 95% confidence interval including the theoretical value of 1.0. Furthermore, the 95% confidence interval of the scaling exponents were close with 1.0 in the middle age and pre-mature forests. For the scaling constants(b), it followed the order of mature forest <young forest < middle-age forest < pre-mature forest. The scaling exponents(a)of herb layer ground in Chinese fir forests were all consistent with the isometric biomass allocation theory. For the scaling constants(b), it followed the order of young forest >mature forest > pre-mature forest > middle-age forest. The result support the theory that above ground biomass of herb layer scales i ometrically with below ground biomass.

References

[1] 范玉龙,胡楠,丁圣彦,等.伏牛山自然保护区森林生态系统草本植物功能群的分类[J].生态学报,2008,28(7):3092-3101. Fan Y L,Hu N,Ding S Y,et al. The classification of plant functional types based on the dominant herbaceous species in forest ecosystem at Funiu Mountain Natural Reserve[J]. Acta Ecologica Sinica, 2008, 28(7): 3092-3101.
[2] 胡相明,程积民,万惠娥.黄土丘陵区人工林下草本层植物的结构特征[J].水土保持通报,2006,26(3):41-45.Doi:10.3969/j.issn.1000-288x.2006.03.010. Hu X M,Cheng J M,Wan H E. Structure characteristics of herbages underfive types of artificial forest plantations in Loess hilly region[J]. Bulletin of Soil and Water Conservation,2006,26(3): 41-45.
[3] 王欢.北京妙峰山林场林下灌草层生物量及固碳效益研究[D].北京:北京林业大学,2014. Wang H. Study on biomass and carbon sequestration benefits for shrubs and herbs of typical plantations in Beijing Miaofengshan Forest Farm [D].Beijing: Beijing Forestry University, 2004.
[4] 龙世友,鲍雅静,李政海,等.内蒙古草原67种植物碳含量分析及与热值的关系研究[J].草业学报,2013,22(1): 112-119. Long S Y, Bao Y J, Li Z H,et al. The carbon contents and the relationship with the calorific values of 67 plants species in Inner Mongolia grasslands[J]. Acta Prataculturae Sinica,2013,22(1):112-119.
[5] 李步杭,张健,姚晓琳,等.长白山阔叶红松林草本植物多样性季节动态及空间分布格局[J].应用生态学报,2008,19(3):467-473 Li B H, Zhang J, Yao X L, et al. Seasonal dynamics and spatial distribution patterns of herbs diversity in broadleaved Korean pine(Pinus koraiensis)mixed forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2008, 19(3): 467-473.
[6] 余敏,周志勇,康峰峰,等.山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J].植物生态学报,2013, 37(5):373-383.Doi:10.3724/SP.J.1258.2013.00039. Yu M, Zhou Z Y, Kang F F, et al. Gradient analysis and environmental interpretation of understory herb layer communities in Xiaoshegou of Lingkong Mountain,Shanxi, China[J]. Chinese Journal of Plant Ecology, 2013,37(5): 373-383.
[7] 王娓,彭书时,方精云. 中国北方天然草地的生物量分配及其对气候的响应[J].干旱区研究, 2008,25(1):90-97. Wang W, Peng S S, Fang J Y. Biomass distribution of natural grasslands and its response to climate change in north China[J]. Aric Zone Research. 2008, 25(1): 90-97.
[8] 肖遥,陶冶,张元明.古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J].植物生态学报,2014,38(9):929-940.Doi:10.3724/SP.J.1258.2014.00087. Xiao Y,Tao Y,Zhang Y M.Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China[J]. Chinese Journal of Plant Ecology,2014,38(9): 929-940.
[9] 陶冶,张元明.准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J].草业学报,2014,23(2):38-48.Doi:10.11686/cyxb20140205. Tao Y, Zhang Y M. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China [J]. Acta Pratacult Sin, 2014, 23(2): 38-48.
[10] 王亮,牛克昌,杨元合,等. 中国草地生物量地上-地下分配格局-基于个体水平的研究[J].中国科学:生命科学,2010,40(7):642-649. Wang L, Niu K C, Yang Y H,et al. Patterns of above and below-ground biomass allocation in China's grasslands: evidence from individual-level observations[J]. Science China: Life Sciences, 2010, 40(7):642-649.
[11] Falster D S, Warton D I, Wright U. User' guide to SMATR: standardised major axis tests and routines Version 2.0[EB/OL].
[2016-12-10].http://www.bio.mq.Edu.au/ecology/SMATR, 2003.
[12] 程栋梁.植物生物量分配模式与生长速率的相关规律研究[D].兰州:兰州大学,2007. Cheng D L. Study on the correlation of plant biomass allocation pattern and growth rate[D]. Lanzhou: Lanzhou University, 2007.
[13] 朱强根, 金爱武, 王意锟, 等. 不同营林模式下毛竹枝叶的生物量分配: 异速生长分析[J]. 植物生态学报, 2013,37(9):811-819.Doi:10.3724/SP.J.1258.2013.00085. Zhu Q G, Jin A W, Wang Y K, et al. Biomass allocation of branches and leaves in Phyllostachys heterocycla ‘Pubescens' under different management modes: allometric scaling analysis[J]. Chinese Journal of Plant Ecology, 2013,37(9): 811-819.
[14] 刘磊,温远光,卢立华,等.不同林龄杉木人工林林下植物组成及其生物量变化[J].广西科学,2007,14(2):172-176.Doi:10.3969/j.issn.1005-9164.2007.02.026. Liu L, Wen Y G, Lu L H, et al. Variety of under-storey species composition and biomass in different age Cunninghamia tanceolata plantation [J]. Guangxi Sciences, 2007, 14(2): 172-176.
[15] 林开敏,洪伟,俞新妥.杉木人工林林下植物生物量的动态特征和预测模型[J].林业科学,2001,37(S1):99-105.Doi:10.3321/j.issn:1001-7488.2001.21.018. Lin K M, Hong W, Yu X T. The dynamic characteristics and forecasting models of biomass of undergrowth plant in Chinese fir plantation [J].Scientia Silvae Sinicae, 2001, 37(1):99-105.
[16] 秦建华,姜志林.杉木林生物量及其分配的变化规律[J].生态学杂志,1996,15(1):1-7. Qin J H, Jiang Z L.The change rule of biomass and its allocation in Chinese fir plantation [J]. Chinese Journal of Ecology, 1996, 15(1):1-7.
[17] 常云妮,钟全林,程栋梁,等. 闽西北地区不同林龄常绿阔叶混交林物种多样性比较[J]. 生态环境学报, 2013, 22(6): 955-960. Doi:10.3969/j.issn.1674-5906.2013.06.008. Chang Y N, Zhong Q L, Cheng D L, et al. Species diversity of ever-green broad-leaved mixed forest with different forest age in the north-west of Fujian Province [J]. Ecology and Environmental Sciences, 2013, 22(6): 955-960.
[18] 赵金龙,王泺鑫,韩海荣,等. 辽河源不同龄组油松天然次生林生物量及空间分配特征[J].生态学报,2014,34(23):7026-7037.Doi:10.5846/stxb201303060357. Zhao J L, Wang L X, Han H R, et al.Biomass and spatial distribution characteristics of Pinus tabulaeformis natural secondary forest at different age groups in the Liaoheyuan Nature Reserve, Hebei Province[J]. Acta Ecologica Sinica, 2014, 34(23):7026-7037.
[19] 王祖华,李瑞霞,王晓杰,等.间伐对杉木人工林林下植被多样性及生物量的影响[J].生态环境学报,2010,19(12):2778-2782.Doi:10.3969/j.issn.1674-5906.2010.12.002. Wang Z H, Li R X, Wang X J, et al. Effects of thinning on biomass and species diversity of understory in Chinese fir plantations [J]. Ecology and Environment, 2010, 19(12): 2778-2782.
[20] Huffman D W, Moore M M. Responses of Fendler ceanothus to overstory thinning, prescribed fire, and drought in an Arizona ponderosa pine forest [J]. Forest Ecology and Management, 2004, 198: 105-115.
[21] Gundale M J, Deluca T H, Fiedler C E, et al. Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical, and biology properties [J]. Forest Ecoloy and Management, 2005, 213(1): 25-38.Doi:10.1016/j.foreco.2005.03.015.
[22] 毛志宏,朱教君,刘足根,等.间伐对落叶松人工林内草本植物多样性及其组成的影响[J].生态学杂志,2006,25(10):1201-1207. Mao Z H, Zhu J J, Liu Z G, et al. Effects of thinning on species diversity and composition of understory herbs in a larch plantation [J].Chinese Journal of Ecology, 2006, 25(10):1201-1207.
[23] 牛存洋,阿拉木萨,宗芹,等.科尔沁沙地小叶锦鸡儿地上-地下生物量分配格局[J].生态学杂志,2013,32(8):1980-1986. Niu C Y, A Lamusa, Zong Q, et al. Allocation patterns of above-and below-ground biomass of Caragana microphylla in Horqin sandy land, north China[J].Chinese Journal of Ecology, 2013, 32(8):1980-1986.

Last Update: 2016-10-30