我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

气候变化对浙江楠潜在分布范围及空间格局的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年06期
Page:
85-91
Column:
研究论文
publishdate:
2016-11-30

Article Info:/Info

Title:
Impact of climate change on potential distribution range and spatial pattern of Phoebe chekiangensis
Article ID:
1000-2006(2016)06-0085-07
Author(s):
WU Xiankun12 NAN Chenhui2 TANG Gengguo1* LI Yao1 MAO Lijun12 ZHANG Zhicheng3
1.College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
2.Nanjing Forest Police College, Nanjing 210023, China;
3.Changzhou Municipal Agricultural Commission, Changzhou 213022, China
Keywords:
Phoebe chekiangensis Maxent model climate change species distribution potential distribution
Classification number :
Q948.13
DOI:
10.3969/j.issn.1000-2006.2016.06.013
Document Code:
A
Abstract:
The impact of climate change on species distribution is one of the hot spots in rare and endangered species protection research. Based on Maxent model, this article predicted the potential distribution of Phoebe chekiangensis and analyzed its distribution pattern in four historical periods, e.g. last glacial maximum(LGM,21 ka BP), mid-Holocene(6 ka,BP), present and 2070. And, it was also estimated that the influence of different climate factors to the potential geographic distribution of the species. The results showed that the high accuracy of Maxent model for predicting the current potential distribution, the area under the receiver operating characteristics curve(AUC values)was 0.996. The region with high suitability includes the high altitude areas Mt. Wuyi and Mt. Xianxialing at the junction of Zhejiang and Fujian Province, Mt. Gongdong and Mt. Yandang at the southeast of Zhejiang Province. The region with moderate suitability includes the low altitude hilly areas in Mt. Mufu, Mt.Luoxiao, Mt.Huaiyu, Mt.Wuyi, Mt.Huangshan, Mt.Tianmu, Mt.Kuaiji, Mt.Yandang and Mt.Gongdong, e.g. During the LGM, the potential distribution region of P. chekiangensis located at the East China Sea continental shelf. In the mid-Holocene, the potential distribution region with very high suitability became similar to that of the present but more larger area, and extended to low altitude areas. P. chekiangensis have the tendency to expand its distribution to northward and eastward under 2070 climate condition. Jackknife test showed the main factors which effected the potential distribution of P. chekiangensis were precipitation of driest quarter, precipitation of coldest quarter, mean temperature of driest quarter.

References

[1] Kozak K H, Graham C H, Wiens J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends Ecol Evol(Amst), 2008, 23(3): 141-148. Doi:10.1016/j.tree.2008.02.001.
[2] 陈瑜, 倪健. 利用孢粉记录定量重建大尺度古植被格局[J]. 植物生态学报, 2008, 32(5): 1201-1212. Doi:10.3773/j.issn.1005-264x.2008.05.025. Chen Y, Ni J. Quantitative palaeovegetation reconstruction at large scale based on pollen records[J]. Journal of Plant Ecology(Chinese Version), 2008, 32(5): 1201-1212.
[3] 于革. 根据花粉模拟的中国植被及6000 a BP植被制图的初步探讨[J]. 植物学报, 1998(7): 665. Doi:10.3321/j.issn:1672-9072.1998.07.012.
[4] 刘鸿雁, 印轶. 森林分布响应过去气候变化:对未来预测的启示[J]. 科学通报, 2013, 58(34): 3501-3512.
[5] 李国庆, 刘长成, 刘玉国, 等. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16): 4827-4835. Doi:10.5846/stxb201212031735. Li G Q, Liu C C, Liu Y G, et al. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16): 4827-4835.
[6] ]胡忠俊, 张镱锂, 于海彬. 基于MaxEnt模型和GIS的青藏高原紫花针茅分布格局模拟[J]. 应用生态学报, 2015, 26(2): 505-511. Hu Z J, Zhang Y L, Yu H B. Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on Maxent model and GIS[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 505-511.
[7] Graham C H, Moritz C, Williams S E. Habitat history improves prediction of biodiversity in rainforest fauna[J]. Proc Natl Acad Sci USA, 2006, 103(3): 632-636. Doi:10.1073/pnas.0505754103.
[8] 王雷宏, 杨俊仙, 郑玉红, 等. 苹果属山荆子地理分布模拟[J]. 北京林业大学学报, 2011, 33(3): 70-74. Wang L H, Yang J X, Zheng Y H, et al. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74.
[9] 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2): 557-567. Doi:10.5846/stxb201304030600. Xu Z L, Peng H H, Peng S Z. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015, 35(2): 557-567.
[10] 蔡静芸, 张明明, 粟海军, 等. 生态位模型在物种生境选择中的应用研究[J]. 经济动物学报, 2014, 18(1): 47-52,58. Doi:10.13326/j.jea.2014.0012. Cai J Y, Zhang M M, Su H J, et al. Application of ecological niche models for selection of species habitat[J]. Journal of Economic Animal, 2014, 18(1): 47-52,58.
[11] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3): 231-259. Doi:10.1016/j.ecolmodel.2005.03.026.
[12] 陈新美, 雷渊才, 张雄清, 等. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学, 2012, 48(1): 53-59. Chen X M, Lei Y C, Zhang X Q, et al. Effects of sample sizes on accuracy and stability of maximum entropy model in predicting species distribution[J]. Scientia Silvae Sinicae, 2012, 48(1): 53-59.
[13] 徐卫华, 罗翀. MAXENT模型在秦岭川金丝猴生境评价中的应用[J]. 森林工程, 2010, 26(2): 1-3,26. Doi:10.3969/j.issn.1001-005X.2010.02.001. Xu W H, Luo C. Application of Maxent model in Rhinopithecus roxllanae habitat assessment in Qinling Mountain[J]. Forest Engineering, 2010, 26(2): 1-3,26.
[14] 刘振生, 高惠, 滕丽微, 等. 基于MAXENT模型的贺兰山岩羊生境适宜性评价[J]. 生态学报, 2013, 33(22): 7243-7249. Doi:10.5846/stxb201207221041. Liu Z S, Gao H, Teng L W, et al. Habitat suitability assessment of blue sheep in Helan Mountain based on Maxent modeling[J]. Acta Ecologica Sinica, 2013, 33(22): 7243-7249.
[15] 车乐, 曹博, 白成科, 等. 基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价[J]. 生态学杂志, 2014, 33(6): 1623-1628. Che L, Cao B, Bai C K, et al. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on Maxent and ArcGIS[J]. Chinese Journal of Ecology, 2014, 33(6): 1623-1628.
[16] 胡秀, 吴福川, 郭微, 等. 基于MaxEnt生态学模型的檀香在中国的潜在种植区预测[J]. 林业科学, 2014, 50(5): 27-33. Doi:10.11707/j.1001-7488.20140504. Hu X, Wu F C, Guo W, et al. Identification of potential cultivation region for Santalum album in China by the Maxent ecologic niche model[J]. Scientia Silvae Sinicae, 2014, 50(5): 27-33.
[17] 雷军成, 徐海根. 基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测[J]. 生态与农村环境学报, 2010, 26(2): 137-141. Doi:10.3969/j.issn.1673-4831.2010.02.008. Lei J C, Xu H G. Maxent-based prediction of potential distribution of Solidago canadensis in China[J]. Journal of Ecology and Rural Environment, 2010, 26(2): 137-141.
[18] 韩阳阳, 王焱, 项杨, 等. 基于Maxent生态位模型的松材线虫在中国的适生区预测分析[J]. 南京林业大学学报(自然科学版), 2015, 39(1): 6-10. Doi:10.3969/j.issn.1000-2006.2015.01.001. Han Y Y, Wang Y, Xiang Y, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2015, 39(1): 6-10.
[19] 朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布[J]. 生物多样性, 2014, 22(2): 223-230. Doi:10.3724/SP.J.1003.2014.08178. Zhu G P, Liu Q, Gao Y B. Improving ecological niche model transfer ability to predict the potential distribution of invasive exotic species[J]. Biodiversity Science, 2014, 22(2): 223-230.
[20] 马松梅, 聂迎彬, 耿庆龙, 等. 气候变化对蒙古扁桃适宜分布范围和空间格局的影响[J]. 植物生态学报, 2014, 38(3): 262-269. Doi:10.3724/SP.J.1258.2014.00023. Ma S M, Nie Y B, Geng Q L, et al. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 262-269.
[21] 于海彬, 张镱锂, 李士成, 等. 基于GIS和物种分布模型的高山植物长花马先蒿迁移路线模拟[J]. 应用生态学报, 2014, 25(6): 1669-1673. Yu H B, Zhang Y L, Li S C, et al. Predicting the dispersal routes of alpine plant Pedicularis longiflora(Orobanchaceae)based on GIS and species distribution models[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1669-1673.
[22] 郭彦龙, 卫海燕, 路春燕, 等. 气候变化下桃儿七潜在地理分布的预测[J]. 植物生态学报, 2014, 38(3): 249-261. Doi:10.3724/SP.J.1258.2014.00022. Guo Y L, Wei H Y, Lu C Y, et al. Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 249-261.
[23] 蒋志刚, 樊恩源. 关于物种濒危等级标准之探讨——对IUCN物种濒危等级的思考[J]. 生物多样性, 2003, 11(5): 383-392. Doi:10.3321/j.issn:1005-0094.2003.05.004. Jiang Z G, Fan E Y. Exploring the endangered species criteria: rethinking the IUCN red list criteria[J]. Biodiversity Science, 2003, 11(5): 383-392.
[24] 向其柏.桢楠属一新种——浙江楠[J].植物分类学报,1974,12(3):295-297.
[25] 马福, 张建龙. 中国重点保护野生植物资源调查[M]. 北京:中国林业出版社, 2009.
[26] 李垚, 张兴旺, 方炎明. 气候变暖对中国栓皮栎地理分布格局影响的预测[J]. 应用生态学报, 2014, 25(12): 3381-3389. Li Y, Zhang X W, Fang Y M. Predicting the impact of global warming on the geographical distribution pattern of Quercus variabilis in China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3381-3389.
[27] World clim-global climate data-free climate data for ecological modeling and GIS[EB/OL].
[2015-10-10].http://worldclim.org/.
[28] Yang X Q, Kushwaha S P S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83-87. Doi:10.1016/j.ecoleng.2012.12.004.
[29] 景鹏飞, 武坤毅, 龚晔, 等. 药用植物细辛在中国的潜在适生区分布[J]. 植物分类与资源学报, 2015, 37(3): 349-356. Doi:10.7677/ynzwyj201514103. Jing P F, Wu K Y, Gong Ye, et al. Prediction of potential geological distribution of asarum in China by Maxent model[J]. Plant Diversity and Resources, 2015, 37(3): 349-356. Doi:10.7677/ynzwyj201514103.
[30] 于晶, 唐艳雪, 郭水良. 基于GIS和MaxEnt比较中国砂藓属与紫萼藓属植物地理分布[J]. 植物科学学报, 2012, 30(5): 443-458. Doi:10.3724/SP.J.1142.2012.50443. Yu J, Tang Y X, Guo S L. Comparison of the geographical distribution of Racomitrium and Grimmia in China using ArcGIS and Maxent software[J]. Journal of Wuhan Botanical Research, 2012, 30(5): 443-458. Doi:10.3724/SP.J.1142.2012.50443.
[31] 胡理乐, 张海英, 秦岭, 等. 中国五味子分布范围及气候变化影响预测[J]. 应用生态学报, 2012, 23(9): 2445-2450. Hu L L, Zhang H Y, Qin L, et al. Current distribution of Schisandra chinensis in China and its predicted responses to climate change[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2445-2450.
[32] 刘晓东,吴锡浩,董光荣,等.末次冰期东亚季风气候的数值模拟研究[J].气象科学,1995,15(4):183-196.
[33] 杨达源. 中国东部第四纪冰期气候与环境的基本特征[J]. 海洋地质与第四纪地质, 1990, 10(1): 71-79.
[34] 谢传礼,翦知湣,赵泉鸿,等.末次盛冰期中国海古地理轮廓及其气候效应[J].第四纪研究,1996(1):1-10.
[35] 刘晓东,吴锡浩,董光荣,等.末次冰期东亚季风气候的数值模拟研究[J].气象科学,1995,15(4):183-196.
[36] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学:B辑 化学 生命科学 地学, 1992(12): 1300-1308.
[37] 江志红, 张霞, 王冀. IPCC-AR4模式对中国21世纪气候变化的情景预估[J]. 地理研究, 2008, 27(4): 787-799. Doi:10.3321/j.issn:1000-0585.2008.04.007. Jiang Z H, Zhang X, Wang J. Projection of climate change in china in the 21st century by IPCC-AR4 models[J]. Geographical Research, 2008, 27(4): 787-799.
[38] 郑卓,黄康有,邓韫,等.冲绳海槽200ka的孢粉记录及冰期-间冰期旋回古环境重建[J].中国科学:地球科学,2013,43(8):1231-1248.
[39] 吴征镒. 论中国植物区系的分区问题[J]. 云南植物研究, 1979(1): 1-20.
[40] Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(6918): 57-60. Doi:10.1038/nature01333.
[41] 倪健, 宋永昌. 亚热带常绿阔叶林若干树种分布与Penman指标关系的探讨[J]. 植物学报, 1998(7): 647. Doi:10.3321/j.issn:1672-9072.1998.07.010.
[42] 谢晓金, 郝日明. Kira与Holdridge热量指标对常绿树种耐低温能力的评价[J]. 福建林学院学报, 2006, 26(3): 258-261. Doi:10.3969/j.issn.1001-389X.2006.03.014. Xie X J, Hao R M. Application of Kira and Holdridge's temperature indexes to low temperature tolerance of evergreen trees[J]. Journal of Fujian College of Forestry, 2006, 26(3): 258-261.
[43] 洪必恭,李绍株.江苏主要常绿阔叶树种的分布与热量关系的初步研究[J].生态学报,1981,1(2):105-111.

Last Update: 2016-11-20