我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

碳酸钠预处理对麦草酶水解及木质素结构的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年06期
Page:
135-140
Column:
研究论文
publishdate:
2016-11-30

Article Info:/Info

Title:
Effects of sodium carbonate pretreatment on enzymatic hydrolysis and lignin structure of wheat straw
Article ID:
1000-2006(2016)06-0135-06
Author(s):
JIANG Bo CAO Tingyue GU Feng JIN Yongcan*
Jiangsu Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
Keywords:
sodium carbonate pretreatment lignin substrate enzymatic digestibility(SED) wheat straw stem leaf
Classification number :
TQ352.62
DOI:
10.3969/j.issn.1000-2006.2016.06.021
Document Code:
A
Abstract:
The morphological structure and chemical composition of wheat straw stems and leaves can significantly affect the enzymatic conversion of the carbohydrate. This paper investigated the effect of sodium carbonate(SC)pretreatment on the structural components and substrate enzymatic digestibility(SED)of wheat straw stems and leaves. Structures of stem and leaf lignin before and after SC pretreatment were characterized by wet chemistry methods. Compared with stems, wheat straw leaves showed better delignification effect in the SC pretreatment. The SED of SC-pretreated leaves(TTA content of 8%, 140 ℃)reached 80.5% when hydrolyzed at an enzyme loading of 10 μmol/(min·g), which was 29% higher than that of stems. The results from nitrobenzene oxidation(NBO)and ozonation indicated that the structure of leaf lignin was different from that of the stem with respect to smaller syringyl units and less β-O-4 linkages. After the SC pretreatment, the reduction of the product yield in the NBO and ozonation of leaf lignin were higher than those of stem lignin, showing that more β-O-4 bonds in leaf lignin were cleaved in the pretreatment. It could be deduced that the different SED between wheat straw leaves and stems correlated with the lignin structure to some degrees. It was confirmed that the content and structure of lignin are important factors affecting the enzymatic saccharification of lignocellulosic biomasses.

References

[1] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials [J]. Science, 2006, 311(5760): 484-489.Doi:10.1126/science.1114736.
[2] Ding S Y, Liu Y S, Zeng Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? [J]. Science, 2012, 338(6110): 1055-1060.Doi:10.1126/science.1227491.
[3] Vanholme R, Demedts B, Morreel K, et al. Lignin biosynthesis and structure [J]. Plant Physiology, 2010, 153: 895-905.Doi:10.1104199.110.155119.
[4] Li M, Si S, Hao B, et al. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus [J]. Bioresource Technology, 2014, 169: 447-454.Doi:10.1016/j.biortech.2014.07.017.
[5] Yu Z Y, Jameel H, Chang H M, et al. The effect of delignification of forest biomass on enzymatic hydrolysis [J]. Bioresource Technology, 2011, 102(19): 9083-9089.Doi:10.1016/j.biortech.2011.07.001.
[6] Chang H M, Jacobs C, Jameel H, et al. Bleachability difference between RDH and kraft-O2 pulps-role of phenolic hydroxyl groups in the residual lignin [C]. Chicago: Tappi Press, 1996: 147-162.
[7] Ban W P, Singh J, Lucia L A. Kraft green liquor pretreatment of softwood chips part Ⅲ: lignin chemical modifications [J]. Holzforschung, 2003, 57(3): 275-281.Doi:10.1515/nf2003.041.
[8] 陈立祥, 章怀云. 木质素生物降解及其应用研究进展[J].中南林学院学报, 2003, 23(1): 79-80.Doi:10.3969/j.issn/1673-923x2003.01.006.Chen L X, Zhang H Y. Recent research advances on the lignin biodegradation and applications [J]. Journal of Central South Forestry University, 2003, 23(1): 79-80.
[9] Yang L F, Cao J, Jin Y C, et al. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw [J]. Bioresource Technology, 2012, 124: 283-291.Doi:10.1016/j.biortech.2012.08.041.
[10] Jin Y C, Huang T, Geng W H, et al. Comparison of sodium carbonate pretreatment for enzymatic hydrolysis of wheat straw stem and leaf to produce fermentable sugars [J]. Bioresource Technology, 2013, 137: 294-301.Doi:10.1016/j.biortech 2013,03.1401.
[11] 孟鑫, 吴文娟, 金永灿. 绿液预处理过程中杨木木质素结构的变化[J]. 南京林业大学学报(自然科学版), 2014, 38(6): 94-98.Doi:10.3969/j.issn/1000-2006.2014.06.018.Meng X, Wu W J, Jin Y C. Structural changes of polar lignin in the process of green liquor pretreatment [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(6): 94-98.
[12] Sluiter A, Hames B, Ruiz R, et al. NREL/TP-510-42618, determination of structural carbohydrates and lignin in biomass [S]. Laboratory Analytical Procedure, National Renewable Energy Laboratory, 2008.
[13] Chen C L. Nitrobenzene and cupric oxide oxidations [C] // Lin S Y, Dence C W. Methods in Lignin Chemistry. Berlin: Springer-Verlag, 1992.
[14] Akiyama T, Sugimoto T, Matsumoto Y, et al. Erythro/threo ratio of β-O-4 structures as an important structural characteristic of lignin. I: improvement of ozonation method for the quantitative analysis of lignin side-chain structure [J]. Journal of Wood Science, 2002, 48(3): 210-215.Doi:10.1007/bf00771369.
[15] Carpita N C. Structure and biogenesis of the cell walls of grasses [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 445-476.Doi:10.1146/annurev.arplant 47.1445.
[16] Bowyer J L, Shmulsky R, Haygreen J G. Forest products and sood science [M]. Iowa: Blackwell Publish, 2007.
[17] Hansen M A T, Hidayat B J, Mogensen K K, et al. Enzyme affinity to cell types in wheat straw(Triticum aestivum L.)before and after hydrothermal pretreatment [J]. Biotechnology for Biofuels, 2013, 6(1): 54.Doi:10.1186/1754-6834-6-54.
[18] Li N, Liu H, Fu S, et al. Cell-type-dependent enzymatic hydrolysis of palm residues: chemical and surface characterization of fibers and parenchyma cells [J]. Biotechnology Letters, 2013, 35(2): 213-218.Doi:10.1007/s10529-012-1079-0.
[19] Sjöström E. Wood chemistry: fundamentals and applications [M]. New York: Academic Press, 1993.
[20] Buranov A U, Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops and Products, 2008, 28(3): 237-259.Doi:10.1016/j.inlcrop2008.03.008.
[21] Jin Z F, Katsumata K S, Lam T B T, et al. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods [J]. Biopolymers, 2006, 83(2): 103-110.Doi:10.1002/bip.20533.
[22] Ibarra D, Chávez M I, Rencoret J, et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study [J]. Agric Food Chem, 2007, 55(9): 3477-3490.Doi:10.1021/jf063728.
[23] Sixta H, Potthast A, Krotschek A W. Chemical pulping processes [C] // Sixta H. Handbook of Pulp. Wiley-Vch, 2006.
[24] Xu N, Zhang W, Ren S. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus [J]. Biotechnology for Biofuels, 2012, 5(1): 58.Doi:10.1186/1754-6834-5-58.
[25] Min D Y, Yang C M, Shi R. The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars(Populus nigra L. and Populus maximowiczii A.)[J]. Biomass and Bioenergy, 2013, 58: 52-57.Doi:10.1016/j.biombioe.2013.08.019.
[26] Studer M H, DeMartini J D, Davis M F, et al. Lignin content in natural Populus variants affects sugar release [J]. Proceedings of the National Academy of Science, 2011, 108(15): 6300-6305.Doi:10.1073/pnas/009252108.

Last Update: 2016-11-20