我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

无机纳米颗粒在植物转化中的应用(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年06期
Page:
162-166
Column:
综合述评
publishdate:
2016-11-30

Article Info:/Info

Title:
Inorganic nanoparticles as delivery vectors for plant transformation
Article ID:
1000-2006(2016)06-0162-05
Author(s):
HUO Ailing12CHEN Jinhui14ZHEN Yan1XIA Bing13CHEN Zhenyu1SHI Jisen14*
1.Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, College of Forestry, Nanjing Forestry University, Nanjing 210037,China;
2. Huaiyin Normal University,Huaian,223300,China;
3.College of Science, Nanjing Forestry University, Nanjing 210037,China;
4. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
Keywords:
inorganic nanoparticle plant transformation gene delivery nucleic acids vectors
Classification number :
Q948
DOI:
10.3969/j.issn.1000-2006.2016.06.025
Document Code:
A
Abstract:
With the development of nanotechnology, nano materials have been increasingly used for delivering genetic materials into plant cells for engineering purposes, which represent a major breakthrough in the 21st century. In this article, we reviewed the advancement of genetic engineering in plant using nanomaterials, including hydroxyapatite, silica, carbon nanotube, magnetite and quantum dots. The advantages and disadvantages of those materials were summarized. The effects of nanomaterials on the physiology of plant cells, as well as the mechanisms by which those nanomaterials are transported across cells are still largely unclear. The cellular biological and biochemistry mechanisms related to this process also need to be clarified. As a result, developing much safer nanomaterials that can specifically deliver genetic materials into target cells or even sub cellular compartments, with highly efficient payload release and functioning will be a main focus in future nanomaterial research.

References

[1] Jin L, Zeng X, Liu M, et al. Current progress in gene delivery technology based on chemical methods and nano-carriers[J]. Theranostics, 2014, 4(3): 240-255.Doi:10.7150/thno.6914.
[2] Torney F, Trewyn B G, Lin V S, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J].Nat Nanotechnol, 2007, 2(5): 295-300.Dou:10.1038/nnano.2007.108.
[3] 董琛, 施季森, 陆叶,等. 聚乙二醇介导鹅掌楸悬浮细胞与CdSe/ZnS量子点纳米颗粒共孵育的互作特征[J]. 中国科学:生命科学,2011, 41(6):494-501. Dong C, Shi J S, Lu Y, et al.Interaction characteristics of the co-incubation between CdSe/ZnS quantum dots and Liriodendron hybrids suspension cells by PEG-mediation[J]. Science China Life, 2011,41(6): 494-501.
[4] Xia B, Dong C, Zhang W, et al. Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells[J].Sci China Life Sci, 2013, 56(1): 82-89. Doi:10.1007/s11427-012-4422-8.
[5] Sone T, Nagamori E, Ikeuchi T, et al. A novel gene delivery system in plants with calcium alginate micro-beads[J].J Biosci Bioeng, 2002, 94(1): 87-91.Doi:10.1016/s1389-1723(02)80123-2.
[6] Naqvis, Maitra A N, Abdin M Z, et al. Calcium phosphate nanoparticle mediated genetic transformation in plants[J]. Journal of Materials Chemistry, 2012, 22(8):3500-3507.Doi:10.1039/czjm,1739h.
[7] Nair R, Poulose A C, Nagaoka Y, et al. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants[J].J Fluoresc, 2011, 21(6): 2057-2068.Doi:10.1007/s10895-011-0904-5.
[8] Sun D, Hussain H I, Yi Z, et al. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles[J]. Plant Cell Rep, 2014, 33(8): 1389-1402. Doi:10.1007/s00299-014-1624-5.
[9] Chang F P, Kuang L Y, Huang C A, et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. Journal of Materials Chemistry: B, 2013, 1(39):5279. Doi:10.1039/c3tb20529k.
[10] Martin-Ortigosa S, Valenstein J S, Sun W, et al. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method[J].Small, 2012, 8(3): 413-422. Doi:10.1002/smll.201101294.
[11] Martin-Ortigosa S, Valenstein J S, Lin V S Y, et al.Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method[J].Adv Funct Mater, 2012, 22(17): 3576-3582. Doi:10.1002/adfm.201200359.
[12] Bates K, Kostarelos K. Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals[J].Adv Drug Deliv Rev, 2013, 65(15): 2023-2033. Doi:10.1016/j.addr.2013.10.003.
[13] Liu Q, Chen B, Wang Q, et al. Carbon nanotubes as molecular transporters for walled plant cells[J]. Nano Lett, 2009, 9(3): 1007-1010. Doi:10.1021/nl803083u.
[14] Giraldo J P, Landry M P, Faltermeier S M, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing[J].Nat Mater, 2014, 13(4): 400-408. Doi:10.1038/nmat3890.
[15] Burlaka O M, Pirko Y V, Yemets A I, et al. Plant genetic transformation using carbon nanotubes for DNA delivery[J].Cytol Genet, 2015, 49(6): 349-357. Doi:10.3103/s009545271506002x.
[16] Fu Y Q, Li L H,Wang P W. Delivering DNA into plant cell by gene carriers of ZnS nanoparticles[J].Chemical Research in Chinese Universities, 2012, 28(4):672-676.
[17] Navarro D A, Bisson M A, Aga D S. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants[J]. Journal of hazardous materials, 2012, 211: 427-435. Doi:10.1016/j.jhazmat.2011.12.012.
[18] Zhang T, Stilwell J L, Gerion D, et al.Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements[J]. Nano Letters, 2006, 6(4): 800-808. Doi:10.1021/nl0603350.
[19] Kamei K, Mukai Y, Kojima H, et al.Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery[J]. Biomaterials, 2009, 30(9): 1809-1814. Doi:10.1016/j.biomaterials.2008.12.015.
[20] 王凤华, 刘俊, 童春义, 等. 电击法磁性纳米颗粒作为水稻转基因载体的研究[J]. 分析化学, 2010, 38(5): 617-621. Doi:10.3724/SP.J.1096.2010.00617. Wang F H,Liu J,Tong C Y,et al. Magnetic nanoparticle as rice transgene vector mediated by electroporation[J].Chinese Journal of Analytical Chemistry, 2010, 38(5):617-621.
[21] Racuciu M, Creanga D E. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue[J]. Romanian Journal of Physics, 2007, 52(3/4): 395.
[22] Wang H, Kou X, Pei Z, et al. Physiological effects of magnetite(Fe3O4)nanoparticles on perennial ryegrass (Lolium perenne L.)and pumpkin(Cucurbita mixta)plants[J]. Nanotoxicology, 2011, 5(1): 30-42. Doi:10.3109/17435390.2010.489206.
[23] Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications[J]. Advanced Drug Delivery Reviews, 2008, 60(11):1307-1315.Doi:10.1016/j.addr.2008.03.016.
[24] Hao Y, Yang X, Shi Y, et al. Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells[J]. Botany, 2013, 91(7): 457-466. Doi:10.1139/cjb-2012-0281.

Last Update: 2016-11-20