我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

N端延长对大肠杆菌铁蛋白结构稳定性及其自组装的影响(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年01期
Page:
35-41
Column:
研究论文
publishdate:
2017-01-31

Article Info:/Info

Title:
Effects of N-terminal elongation on the stability and self-assembly of Escherichia coli bacterioferritin
Article ID:
1000-2006(2017)01-0035-07
Author(s):
ZHANG Yu LIU Zhongche WANG Lijun LI Xun WANG Fei
Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
bacterioferritin nano-cage protein self-assembly thermostability
Classification number :
Q816
DOI:
10.3969/j.issn.1000-2006.2017.01.006
Document Code:
A
Abstract:
【Objective】Investigate the effect of N-terminal elongation on the structural stability and protein self-assembly of the nano-cage bacterioferritin to provide the basis for the construction of functional nanomaterials by incorporating biomolecules at the N-terminus of bacterioferritin.【Method】Escherichia coli bacterioferritin protein was genetically engineered by elongating the N-terminus with six histidine residues. The mutant oligomerization state, secondary structure and thermo-stability were characterized and compared with that of the wild type using size exclusion chromatography, native gel electrophoresis and circular dichroism spectroscopy.【Result】The wild type formed a mixture of 24-mer and dimer in solution, while the mutant formed solely dimer. Consistent with the size exclusion chromatography experiment, only one band was observed corresponding to the wild-type dimer according to the native gel electrophoresis. Characterization of the mutant using circular dichroism demonstrated that it still folded into α-helical structure, exhibiting similar secondary structure as compared to the wild type. The melting temperature of the mutant was found to be 1.1 ℃ lower than that of the wild type. 【Conclusion】Although it still folded into the α-helical structure, the protein with an elongated N-terminus completely lost the ability to form the nano-cage structure, and formed dimer solely in solution with reduced thermo-stability compared with that of the parent protein. This study indicates that N-terminal elongation might result in a conformational change of bacterioferritin subunits, preventing the protein from self-assembling into the nano-cage structure.

References

[1] EBRAHIMI K H, HAGEDOORN P L, HAGEN W R. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin [J]. Chem Rev, 2015, 115(1): 295-326. DOI: 10.1021/cr5004908.
[2] HARRISON P M, AROSIO P. Ferritins: molecular properties, iron storage function and cellular regulation [J]. Bba-Bioenergetics, 1996, 1275(3):161-203. DOI:10.1016/0005-2728(96)00022-9.
[3] 王群力,孔波,黄河清. 铁蛋白纳米蛋白壳结构与功能研究新进展 [J]. 化学进展, 2004, 16(4): 516-519. WANG Q L, KONG B, HUANG H Q. Progress in structural and functional study of nanometer protein shell of the ferritin [J]. Prog Chem, 2004, 16(4): 516-519.
[4] THEIL E C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms [J]. Annu Rev Biochem, 1987, 56: 289-315. DOI:10.1146/annurev.bi.56.070187.001445.
[5] LAWSON D M, ARTYMIUK P J, YEWDALL S J, et al. Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts [J]. Nature, 1991, 349(6309): 541-544. DOI: 10.1038/349541a0.
[6] ZHANG Y, ORNER B P. Self-assembly in the ferritin nano-cage protein superfamily [J].Int J Mol Sci, 2011, 12(8): 5406-5421. DOI: 10.3390/ijms12085406.
[7] GÁLVEZ N, VALERO E, DOMINGUEZ-VERA J M, et al. Structural and magnetic characterization of Pd nanoparticles encapsulated in apoferritin [J]. Nanotechnology, 2010, 21(27): 274017-274022. DOI: 10.1088/0957-4484/21/27/274017.
[8] MA-HAM A, WU H, WANG J, et al. A poferritin-based nanomedicine platform for drug delivery: equilibrium binding study of daunomycin with DNA [J].J Mater Chem, 2011, 21(24): 8700-8708. DOI: 10.1039/C0JM04321D.
[9] YAMASHITA I, KIRIMURA H, OKUDA M, et al.Selective nanoscale positioning of ferritin and nanoparticles by means of target-specific peptides [J]. Small, 2006, 2(10): 1148-1152. DOI:10.1002/smll.200600220.
[10] KANG S, SUCI P A, BROOMELL C C, et al. Janus-like protein cages: spatially controlled dual-functional surface modifications of protein cages [J]. Nano Lett, 2009, 9(6): 2360-2366. DOI: 10.1021/nl9009028.
[11] SUCI P A, KANG S, YOUNG M, et al. A streptavidin-protein cage janus particle for polarized targeting and modular functionalization [J].J Am Chem Soc, 2009, 131(26): 9164-9165. DOI:10.1021/ja9035187.
[12] UCHIDA M, FLENNIKEN M L, ALLEN M, et al. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles [J]. J Am Chem Soc, 2006, 128(51): 16626-16633. DOI:10.1021/ja0655690.
[13] JUTZ G,VAN RIJN P, MIRANDA B S, et al. Ferritin: a versatile building block for bionanotechnology [J]. Chem Rev, 2015, 115(4): 1653-1701. DOI:10.1021/cr400011b.
[14] 黄雅佩,黄培森,陈小东, 等. 铁蛋白重链亚基纳米载药系统的构建及其特性 [J]. 华东理工大学学报(自然科学版), 2015,41(5): 629-635. DOI:10.14135/j.cnki.1006-3080.2015.05.009. HUANG Y P, HUANG P S, CHEN X D, et al. Epidermal growth factor-ferritin H-chain nanoparticles as nanocarrier of doxorubicin [J]. Journal of East China University of Science and Technology(Natural Science Edition), 2015,41(5): 629-635.
[15] 高利增,阎锡蕴. 纳米酶的发现与应用 [J]. 生物化学与生物物理进展, 2013, 40(10): 892-902. DOI:10.3724/SP.J.1206.2013.00409. GAO L Z, YAN X Y. Discovery and current application of nanozyme [J]. Prog Biochem Biophys, 2013,40(10): 892-902.
[16] BANYARD S H, STAMMERS D K, HARRISON P M. Electron-density map of apoferritin at 2.8-Å resolution [J]. Nature, 1978, 271(5642): 282-284. DOI:10.1038/271282a0.
[17] SANTAMBROGIO P, PINTO P, LEVI S, et al. Effects of modifications near the 2-, 3-and 4-fold symmetry axes on human ferritin renaturation [J]. Biochem J, 1997, 322(2): 461-468. DOI:10.1042/bj3220461.
[18] FAN R, BOYLE A L, CHEONG V V, et al. A helix swapping study of two protein cages [J]. Biochemistry, 2009, 48(24): 5623-5630.DOI:10.1021/bi900387t.
[19] KILIC M A, SPIRO S, MOORE G R. Stability of a 24-meric homopolymer: comparative studies of assembly-defective mutants of Rhodobacter capsulatus bacterioferritin and the native protein [J]. Protein Sci, 2003, 12(8): 1663-1674. DOI:10.1110/ps.0301903.
[20] LEVI S, LUZZAGO A, CESARENI G, et al. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site[J]. J Biol Chem, 1988, 263(34): 18086-18092.
[21] YOSHIZAWA K, MISHIMA Y, PARK S Y, et al. Effect of N-terminal residues on the structural stability of recombinant horse L-chain apoferritin in an acidic environment [J]. J Biochem, 2007, 142(6): 707-713. DOI:10.1093/jb/mvm187.
[22] ANDREWS S C, SMITH J M A, HAWKINS C, et al. Overproduction, purification and characterization of the bacterioferritin of Escherichia coli and a C-terminally extended variant [J]. Eur J Biochem,1993, 213(1): 329-338. DOI:10.1111/j.1432-1033.1993.tb17766.x.
[23] LUZZAGO A, CESARENI G. Isolation of point mutations that affect the folding of the H-chain of human ferritin in E. coli [J]. EMBO J, 1989, 8(2): 569-576.
[24] LEVI S, LUZZAGO A, FRANCESCHINELLI F, et al. Mutational analysis of the channel and loop sequences of human ferritin H-chain [J]. Biochem J, 1989, 264(2): 381-388.
[25] ZHANG Y, RAUDAH S, TEO H, et al.Alanine-shaving mutagenesis to determine key interfacial residues governing the assembly of a nano-cage maxi-ferritin [J]. J Bio Chem, 2010, 285(16): 12078-12086. DOI:10.1074/jbc.M109.092445.

Last Update: 2017-01-30