我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

红松天然林胸径生长的空间异质性及其与地形的关系(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年01期
Page:
129-135
Column:
研究论文
publishdate:
2017-01-31

Article Info:/Info

Title:
Spatial heterogeneity of diameter at breast height growth for Korean pine natural forest and its relationships with terrain factors
Article ID:
1000-2006(2017)01-0129-07
Author(s):
LI Cheng LUO Peng* LI Zhiqing
Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
Keywords:
natural Korean pine forest DBH growth spatial heterogeneity terrain
Classification number :
S757
DOI:
10.3969/j.issn.1000-2006.2017.01.020
Document Code:
A
Abstract:
【Objective】The spatial heterogeneity of DBH growth for natural Korean pine forests and its relationship with terrain factors were discussed for providing a basis for scientific management.【Method】Geo-statistical, variance analysis, geographically weighted regression and other methods were used to study the spatial heterogeneity of DBH growth for natural Korean pine forest and its relationships with altitude, slope position, slope orientation and slope gradient in Baihe Forestry Bureau.【Result】The coefficient of variation for DBH growth in natural Korean pine forest was 0.6, which belonged to moderate variability in the study area. The exponential model with highly fitting degree was the most suitable way for describing spatial variation characteristics. The spatial autocorrelation of spatial distribution of DBH growth in natural Korean pine forest was significant in the range of 0-4 230 m. The method of OLS and GWR were chosen to establish the DBH growth model for natural Korean pine forest based on terrain factors. The results showed that the prediction accuracy was improved by the GWR method compared to OLS method.【Conclusion】The spatial heterogeneity of DBH growth for natural Korean pine forest was significant and produced difference with the change of terrain factors. The change of altitude and slope orientation exerted greater influence on the DBH growth.

References

[1] 孔宁宁, 曾辉. 四川卧龙自然保护区植被的地形分异格局研究[J]. 北京大学学报(自然科学版), 2002, 38(4): 543-549. DOI:10.3321/j.issn:0479-8023.2002.04.016. KONG N N, ZENG H. Study on the topographic variation pattern of vegetation distribution in Wolong Nature Reserve, Sichuan Province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38(4): 543-549.
[2] 胡志伟, 沈泽昊, 吕楠, 等. 地形对森林群落年龄及其空间格局的影响[J]. 植物生态学报, 2007, 31(5): 814-824. DOI:10.17521/cjpe.2007.0103. HU Z W, SHEN Z H, LYU N, et al. Impacts of topography on the spatial pattern of the age of forest community[J]. Journal of Plant Ecology, 2007, 31(5): 814-824.
[3] KAREIVA P. Special feature: space: the final frontier for ecological theory[J]. Ecology, 1994, 75(1): 1. DOI:10.2307/1939376.
[4] 王政权. 地统计学及在生态学中的应用[M]. 北京:科学出版社, 1999:3-21. WANG Z Q. Statistics and its application in ecology[M]. Beijing: Science Press, 1999:3-21.
[5] PICKETT S T A, CADENASSO M L. Landscape ecology: spatial heterogeneity in ecological systems[J]. Science-AAAS-Weekly Paper Edition, 1995, 269(5222): 331-333.
[6] 赵安玖, 胡庭兴, 陈小红. 山地阔叶混交林林木生长的空间异质性[J]. 林业科学研究, 2008, 21(6): 751-756. DOI:10.3321/j.issn:1001-1498.2008.06.003. ZHAO A J, HU T X, CHEN X H, et al. Spatial heterogeneities of tree growth in subtropical mountain broad-leaved mixed forest[J]. Forest Research, 2008, 21(6): 751-756.
[7] 刘宜滨. 地形因子对闽南山区尾巨桉造林的影响[J]. 安徽农学通报, 2010, 16(7): 166-169. DOI:10.3969/j.issn.1007-7731.2010.07.081. LIU Y B. The impact of Minnan mountainous terrain factors on reforestation of Eucalyptus randis×E.grandis[J]. Anhui Agricultural Science Bulletin, 2010, 16(7): 166-169.
[8] 李兵兵. 塞罕坝落叶松人工林与白桦次生林林分生长规律及其与地形因子关系研究[D]. 保定:河北农业大学, 2012. LI B B. Studies on the stand growth law and the relationship with topographical factors in Larix principis-rupprechtii. Mayr. artificial forest and Betula platyphylla Suk. secondary forest of Saihanba[D]. Baoding: Hebei Agricultural University, 2012.
[9] LEI X, PENG C, WANG H, et al. Individual height-diameter models for young black spruce(Picea mariana)and jack pine (Pinus banksiana)plantations in New Brunswick, Canada[J]. The Forestry Chronicle, 2009, 85(1): 43-56.
[10] SHARMA M, PARTON J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187-198.
[11] 黄家荣, 杨世逸, 温佐吾. 马尾松人工林单木胸径生长模型研究[J]. 贵州农学院学报, 1994, 13(1): 12-16. HUANG J R, YANG S Y, WEN Z W. The study on growing models for DBH of individual tree in masson pine plantations[J]. Guizhou Agronomy Journal, 1994, 13(1): 12-16.
[12] 王孝安, 段仁燕, 王明利. 太白红杉单木胸径生长模型的研究[J]. 武汉植物学研究, 2005, 23(2): 157-162. DOI:10.3969/j.issn.2095-0837.2005.02.012. WANG X A, DUAN R Y, WANG M L. Study on DBH increment model of individual trees growing for Larix chinensis[J]. Journal of Wuhan Botanical Research, 2005, 23(2): 157-162.
[13] 刘平, 马履一, 王玉涛, 等. 油松中幼人工林单木胸径生长模型研究[J]. 沈阳农业大学学报, 2009, 40(2): 197-201. DOI:10.3969/j.issn.1000-1700.2009.02.016. LIU P, MA L Y, WANG Y T, et al. Individual DBH growth model of Pinus tabulaeformis young-middle aged plantation[J]. Journal of Shenyang Agricultural University, 2009, 40(2): 197-201.
[14] 黄家荣, 万兆溟.马尾松人工林与距离有关的单木模型研究[J].山地农业生物学报, 2000,19(1):10-15. DOI:10.3969/j.issn.1008-0457.2000.01.003. HUANG J R, WANG Z M. The study on distance-dependent models of individual tree in Pinus massoniana plantation[J]. Journal of Mountain Agriculture & Biology, 2000, 19(1): 10-15.
[15] 马利强, 玉宝, 王立明, 等. 兴安落叶松天然林单木高生长模型[J]. 南京林业大学学报(自然科学版), 2013, 37(2): 169-172. DOI:10.3969/j.jssn.1000-2006.2013.02.031. MA L Q, YU B, WANG L M, et al. Single tree height growth models of Larix gmelinii natural forest[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2013, 37(2): 169-172.
[16] 陈伯望,洪菊生. 杉木种源胸径生长地理变异的趋势面分析[J]. 林业科学,1995,31(2):110-115. CHEN B W, HONG J S. Trend surface analysis DBH data of Chinese fir provenances[J]. Scientia Silvae Sinicae, 1995, 31(2):110-115.
[17] 洪伟, 吴承祯. 杉木种源胸径生长地理变异规律的研究[J]. 植物生态学报, 1998, 22(2): 186-192. DOI:10.3321/j.issn:1005-264X.1998.02.011. HONG W, WU C Z. Geographic variation of DBH growth of Chinese fir provenances[J]. Journal of Plant Ecology, 1998, 22(2): 186-192.
[18] 陈美高. 马尾松种源胸径生长的空间异质性[J]. 福建林学院学报, 2005, 25(4): 333-337. CHEN M G. Geographic variability on the DBH growth of Pinus massoniana provenance[J]. Journal of Fujian College of Forestry, 2005, 25(4): 333-337.
[19] 胡艳波, 惠刚盈, 戚继忠, 等. 吉林蛟河天然红松阔叶林的空间结构分析[J]. 林业科学研究, 2004, 16(5): 523-530. DOI:10.3321/j.issn:1001-1498.2003.05.002. HU Y B, HUI G Y, QI J Z, et al. Analysis of the spatial structure of natural Korean pine broad leaved forest[J]. Forest Research, 2004, 16(5): 523-530.
[20] 徐海, 惠刚盈, 胡艳波, 等. 天然红松阔叶林不同径阶林木的空间分布特征分析[J]. 林业科学研究, 2007, 19(6): 687-691. DOI:10.3321/j.issn:1001-1498.2006.06.003 XU H, HUI G Y, HU Y B, et al. Analysis of spatial distribution characteristics of trees with different diameter classes in natural Korean pine broad leaved forest[J]. Forest Research, 2007, 19(6): 687-691.
[21] 邓送求, 闫家锋, 关庆伟. 南京紫金山枫香风景林空间结构分析[J]. 南京林业大学学报(自然科学版), 2010, 34(4): 117-122. DOI:10.3969/j.issn.1000-2006.2010.04.026. DENG S Q, YAN J F, GUAN Q W. Spatial structure of scenic forest of Liquidamabar formosana in Nanjing Zijin Mountain [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 19(6): 687-691.
[22] 吴瑶. 不同类型红松林的空间分布格局及异质性研究[D].哈尔滨:东北林业大学, 2014. WU Y. Research on spatial distribution and heterogeneity of different kinds Korean pine forests[D]. Harbin:Northeast Forestry University, 2014.
[23] 施明辉, 赵翠薇, 郭志华, 等. 基于 SOM 神经网络的白河林业局森林健康分等评价[J]. 生态学杂志, 2011, 30(6): 1295-1303. SHI M H, ZHAO C W, GUO Z H, et al. Forest health assessment based on self-organizing map neural network: a case study in Baihe Forestry Bureau, Jilin Province[J]. Chinese Journal of Ecology, 2011, 30(6): 1295-1303.
[24] 张峰, 张金屯. 历山自然保护区猪尾沟森林群落植被格局及环境解释[J]. 生态学报, 2003, 23(3): 421-427. DOI:10.3321/j.issn:1000-0933.2003.03.003. ZHANG F, ZHANG J T. Pattern of forest vegetation and its environmental interpretation in Zhuweigou, Lishan Mountain Nature Reserve[J]. Acta Ecologica Sinica, 2003, 23(3): 421-427.
[25] 钱拴提, 孔德祥, 韩东锋, 等. 秦岭山茱萸立地因子主分量分析及立地条件类型分类研究[J]. 西北植物学报, 2003, 23(6): 916-920. DOI:10.3321/j.issn:1000-4025.2003.06.009. QIAN S T, KONG D X, HAN D F, et al. Study on the taxonomy about the types of site conditions of Cornus officinalis in Qinling Mountain area[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(6): 916-920.
[26] PAUSAS J G, RIBEIRO E, VALLEJO R. Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula[J]. Forest Ecology and Management, 2004, 203(1): 251-259.
[27] LIN G F, CHEN L H. A spatial interpolation method based on radial basis function networks incorporating a semivariogram model[J]. Journal of Hydrology, 2004, 288(3): 288-298.
[28] OLEA R A. A six-step practical approach to semivariogram modeling[J]. Stochastic Environmental Research and Risk Assessment, 2006, 20(5): 307-318. DOI:10.1007/s00477-005-0026-1.
[29] FOTHERINGHAM A S, CHARLTON M, BRUNSDON C. The geography of parameter space: an investigation of spatial non-stationarity[J]. International Journal of Geographical Information Systems, 1996, 10(5): 605-627.
[30] FOTHERINGHAM A S, BRUNSDON C, CHARLTON M. Quantitative geography: perspectives on spatial data analysis[M]. London:Sage Publications, 2000.
[31] 欧光龙, 王俊峰, 肖义发, 等. 思茅松天然林单木生物量地理加权回归模型构建[J]. 林业科学研究, 2014, 27(2): 213-218. OU G L, WANG J F, XIAO Y F, et al. Modeling individual biomass of Pinus kesiya var. langbianensis natural forests by Geographically Weighted Regression[J]. Forest Research, 2014, 27(2): 213-218.
[32] ZHANG X Y, YUE Y S, ZHANG X D, et al. Spatial variability of nutrient properties in black soil of northeast China[J]. Pedosphere, 2007, 17(1): 19-29.
[33] HOFMANN T, DARSOW A, SCHAFMEISTER M T. Importance of the nugget effect in variography on modeling zinc leaching from a contaminated site using simulated annealing[J]. Journal of Hydrology, 2010, 389(1): 78-89.
[34] ZHAO K, XU J, SELIM H M. Heavy metal contaminations in a soil-rice system: identification of spatial dependence in relation to soil properties of paddy fields[J]. Journal of Hazardous Materials, 2010, 181(1): 778-787.

Last Update: 2017-01-30