我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

打浆压溃作用对切短纤维形态结构的影响(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年01期
Page:
143-148
Column:
研究论文
publishdate:
2017-01-31

Article Info:/Info

Title:
Effects of the beating and crushing action on the morphological structure of cut-fiber
Article ID:
1000-2006(2017)01-0143-06
Author(s):
LI Guanlian JIAO Liang BIAN Huiyang JIAO Li DAI Hongqi*
Jiangsu Provincial Key Laboratory of Pulp &
Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
Keywords:
fiber length beating and crushing permeation and swelling microfibril
Classification number :
TQ352.4
DOI:
10.3969/j.issn.1000-2006.2017.01.022
Document Code:
A
Abstract:
【Objective】The model of the relationship between microfibril length and microfibril angle in S2 fiber layer was developed based on the microstructure characteristics of plant cell walls, which can be used to estimate the fiber length for the preparation of nanofibers. 【Method】The fibers were cut to the range of the calculated length quickly by the free beating and crushing by the subsequent alkaline treatment(pH = 7.5). The morphology and structure changes were examined using a combination of AFM and TEM. 【Result】The water retention value(r(WRV))increased drastically from 125.6% to 319.3% for the fibers that had a length ranging from 0.41-0.64 mm. The rigid structure of fibers was easily destroyed due to the generating of longitudinal cracking. The results also demonstrated that it would be much easier for Na+ ion to penetrate the internal layers of fibers from fiber ends and surface cracks, resulting in swelling fibers, removing P and S1 layers of the fibers’walls, and decreasing fibers’bonding effectively. From the characterization results, the crystallinity of the fibers was 72%-73% and the activation energy of pyrolysis was 75.02-76.93 kJ/mol in the early stage of compression(r(WRV)=125.6%). With the increase of the compressive strength(r(WRV)=319.3%), the crystallinity of the fibers decreased to 45% and the activation energy of pyrolysis decreased to 37.78 kJ/mol. This further confirmed that the fiber with a certain strength crushing treatment can effectively weaken the binding force between the fiber microfibril layers. 【Conclusion】The fibers originated from different types of raw materials and possessed different morphologies can be cut into short fibers with an appropriate length, thus facilitating the crush, swell and micro-miniaturized process.

References

[1] ABE K, IWAMOTO S, YANO H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood[J]. Biomacromolecules, 2007, 8(10): 3276-3278. DOI:10.1021/bm700624p.
[2] NISHINO T, MATSUDA I K H. All-cellulose composite[J]. Macromolecules, 2004, 37(20): 7683-7687. DOI:10.1021/ma049300h.
[3] NISHIYAMA Y. Structure and properties of the cellulose microfibril[J]. Journal of Wood Science, 2009, 55(4): 241-249. DOI:10.1007/s10086-009-1029-1.
[4] SAKURAD I, NUKUSHINA Y, ITO T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers[J]. Journal of Polymer Science, 1962(57): 651-660. DOI:10.1002/pol.1962.1205716551.
[5] NOGI M, YANO H. Optically transparent nanofiber sheets by deposition of transparent materials: a concept for a roll-to-roll processing[J]. Applied Physics Letters, 2009, 94(23): 233117. DOI:10.1063/1.3154547.
[6] NYHOL M L, NYSTROM G, MIHRANYAN A, et al. Toward flexible polymer and paper-based energy storage devices[J]. Advanced Materials, 2011, 23(33): 3751-3769. DOI:10.1002/adma.201004134.
[7] ABE H, OHTANI J, FUKAZAWA K. FE-SEM observations on the microfibrillar orientation in the secondary wall of tracheids[J]. IAWA Journal, 1991, 12(4): 431-438. DOI:10.1163/22941932-90000546.
[8] HULT E L, LARSSON P T, IVERSEN T. A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp[J]. Cellulose, 2000, 7(1): 35-55. DOI:10.1016/s0144-8617(01)00309-5.
[9] ZHANG W, LIANG M, LU C. Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling[J]. Cellulose, 2007, 14(5): 447-456. DOI:10.1007/s10570-007-9135-y.
[10] HERRICK F W, CASEBIER R L, HAMILTON J K, et al. Microfibrillated cellulose: morphology and accessibility[J]. J Appl Polym Sci: Appl Polym Symp, 1983, 37: 797-813.
[11] IWAMOTO S, NAKAGAITO A N, YANO H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites[J]. Applied Physics: A, 2007, 89(2): 461-466. DOI:10.1007/s00339-007-4175-6.
[12] 梁锋, 李德深, 罗梦奎. 纤维素的溶胀与溶解[J]. 广州化工, 1987(4): 11-12. LIANG F, LI D S, LUO M K. Swelling and dissolution of cellulose[J]. Guangzhou Chemical Industry, 1987(4): 11-12.
[13] SIRO I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose, 2010, 17(3): 459-494. DOI:10.1007/s10570-010-9405-y.
[14] ROY C, BUDTOVA T, NAVARD P, et al. Structure of cellulose-soda solutions at low temperatures[J]. Biomacromolecules, 2001, 2(3): 687-693. DOI:10.1021/bm010002r.
[15] WANG W, ZHANG P, ZHANG S, et al. Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution[J]. Carbohydrate Polymers, 2013, 98(1): 1031-1038. DOI:10.1016/j.carbpol.2013.06.076.
[16] KIM S, HOLTZAPPLE M T. Effect of structural features on enzyme digestibility of corn stover[J]. Bioresource Technology, 2006, 97(4): 583-591. DOI:10.1016/j.biortech.2005.03.040.
[17] 王菊华,李玉华,蒙文友,等. 龙须草的微细结构及其在打浆过程中细胞壁的变化[J]. 中国造纸, 1984(3): 5-18. WANG J H, LI Y H, MEMG W Y et al. The ultrastructure of Chinese alpine rush and the changes of their cell walls during beating[J]. Pulp & Paper, 1984(3): 5-18.
[18] 戴红旗,李关莲,卞辉洋,等. 一种基于柔性纳米纸基材料的木质纤维微纤丝解离方法: 201410196785.4 [P]. 中国,2014-07-30. DAI H Q, LI G L, BIAN H Y, et al. A dissociation method of wood fiber microfibril based on flexible nano-paper composite:201410196785.4[P]. 2014-07-30.
[19] 刘仁庆. 纤维素化学基础[M]. 北京: 科学出版社, 1985.
[20] MEYLAN B, BUTTERFIELD B. Helical orientation of the microfirils in tracheids, fires and vessels[J]. Wood Science and Technology, 1987, 12(3): 219-222. DOI:10.1007/bf00372867.
[21] 刘士亮. 纸浆纤维在中浓打浆过程中的作用机制[J].湖北造纸, 2009(1): 3-5.
[22] HU H, ZHANG Y, LIU X, et al. Structural changes and enhanced accessibility of natural cellulose pretreated by mechanical activation[J]. Polymer Bulletin, 2014, 71(2): 453-464. DOI:10.1007/s00289-013-1070-5.
[23] RADBURY A W, SAKAI Y, SHAFIZADEH F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11): 3271-3280. DOI:10.1002/app.1979.070231112.
[24] 李琛. 碱和酶处理工艺对杨木主要成分及微纳纤丝的制备影响[D]. 南京: 南京林业大学, 2012. LI C. The effect of alkali combined with enzyme treatment on the separation process of cellulose, hemicelluloses and lignin of poplar wood and cellulose micro/nano fibrils[D]. Nanjing: Nanjing Forestry University, 2012.
[25] 陈森. 生物质热解特性及热解动力学研究[D]. 南京:南京理工大学, 2005. CHEN S. The research of biomass pyrolysis characteristics and pyrolysis dynamics[D]. Nanjing: Nanjing University of Science and Technology,2005.
[26] COAST A W, REDFERN J P. Kinetic parameters from thermogravimetric data[J]. Nature, 1964, 201: 68-69. DOI:10.1038/201068a0.
[27] CIOLACU D, POPA V I. On the thermal degradation of cellulose allomorphs[J]. Cellulose Chemistry and Technology, 2006, 40(6): 445-449. DOI:10.1007/s10973-010-0911-9.

Last Update: 2017-01-30