我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

柔性喷雾机底盘电液作动器的模糊PID控制(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年01期
Page:
163-169
Column:
研究论文
publishdate:
2017-01-31

Article Info:/Info

Title:
Position control of electro-hydraulic actuator system for flexible sprayer chassis using fuzzy PID controller
Article ID:
1000-2006(2017)01-0163-07
Author(s):
ZHANG Hua12ZHENG Jiaqiang1*
1. College of Mechanical and Electronic Engineering,Nanjing Forestry University, Nanjing 210037, China;
2. The Institute of Mechanical Engineering, Anhui Science and Technology University, Fengyang 233100, China
Keywords:
flexible chassis electro-hydraulic actuator fuzzy PID position tracking plant protection spray operation
Classification number :
S22
DOI:
10.3969/j.issn.1000-2006.2017.01.025
Document Code:
A
Abstract:
【Objective】To protect plants from attacks of bacteria and fungi, there is a need to accurately control spray operation under complex agricultural and forestry environments. To solve the major problem are that the parameter of a traditional proportional integral differential( PID )controller is not self-adaptive to the position error, and the hybrid fuzzy-PID controller with coupled rule(HFPIDCR)is difficult to plan in it’s switching scheme in electro-hydraulic actuator(EHA)system of the sprayer chassis.【Method】The geometric, physical and mathematical model of the EHA system were developed. Structural static analysis and optimization design were performed with the finite element method. An underlapped three-position four-way proportional valve was selected as the control component and a fuzzy PID controller was designed. The controllers were established and simulated with MATLAB/SIMULINK. Control effects of three kinds of controllers were compared.【Result】If the two horizontal axis diameters of chassis are increased by 10 mm while cylinder and piston rod diameters of EHA are increased by 5 mm respectively, then the maximum deformation of the horizontal axis and EHA are reduced to 4.6 mm and 1.1 mm respectively. The chassis supporting strength requirements are satisfied. The rising time, settling time, integral absolute error(IAE)and integral time absolute error(ITAE)of the fuzzy PID controller are 0.099, 0.251, 0.013 and 0.005 s in upward motion and 0.088, 0.267, 0.009 and 0.013 s in downward motion, respectively. Comparing to the traditional PID and HFPIDCR controller, the proposed fuzzy PID controller has better comprehensive characteristics and the various control index values are significantly lower. 【Conclusion】The fuzzy PID controller has more rapid response and higher control accuracy in the position tracking control of EHA system of a sprayer chassis.

References

[1] 张华,郑加强,徐幼林,等.智能多功能喷雾机底盘:中国,ZL201310290793.0[P].2014-04-22. ZHANG H,ZHENG J Q,XU Y L,et al. New concept intelligent multi-function sprayer chassis:China, ZL201310290793.0[P].2014-04-22.
[2] HAS Z, RAHMAT M F, HUSAIN A R, et al. Robust position tracking control of an electro-hydraulic actuator in the presence of friction and internal leakage[J].Arabian Journal for Science and Engineering,2014,39(3):2965-2978.DOI:10.1007/S13369-013-0888-3.
[3] DO H T, AHN K K. Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller[J].Journal of Mechanical Science and Technology,2013,27(3):875-884.DOI:10.1007/S12206-012-1237-2.
[4] DANIEL M,WONOHADIDJOJO, KOTHAPALLI G, et al. Position control of electro-hydraulic actuator system using fuzzy logic controller optimized by particle swarm optimization[J]. International Journal of Automation and Computing,2013,10(3):181-193.DOI:10.1007/S11633-013-0711-3.
[5] KIM H M, PARK S H, LEE J M,et al. A robust control of electro hydrostatic actuator using the adaptive back-stepping scheme and fuzzy neural networks[J]. International Journal of Precision Engineering and Manufacturing,2010,11(2):227-236.DOI:10.1007/S12541-010-0026-2.
[6] DEMIR O,KESKIN I, CETIN S. Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach[J].Nonlinear Dynamics, 2012,67(1):2139-2151.DOI:10.1007/S11071-011-0135-Y.
[7] ÇETIN S,VOLKAN A, AKKAYA. Simulation and hybrid fuzzy-PID control for positioning of a hydraulic system[J].Nonlinear Dynamics,2010 61(2):465-476.DOI:10.1007/S11071-010-9662-1.
[8] 王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003:206-209.
[9] 陈浩, 卢伟, 赵贤林, 等. 基于力反馈的拖拉机驾驶机器人换挡机械手模糊PID自适应控制方法研究[J]. 南京农业大学学报, 2016, 39(1): 166-174. DOI:10.7685/jnau.201504031. CHEN H, LU W, ZHAO X L, et al. The fuzzy-adaptivepid control based on the force feedback of the tractor robot driver’s gear shift mechanical arm[J]. Journal of Nanjing Agricultural University, 2016, 39(1): 166-174. DOI:10.7685/jnau.201504031.
[10] KIM J H, OH S J. A fuzzy PID controller for nonlinear and uncertain systems[J]. Soft Computing,2000,(4):123-129.
[11] YANG T B, CHEN X, HU H,et al. A fuzzy PID thermal control system for casting dies[J].Intelligent Manufacturing,2008(19):375-382.DOI:10.1007/S10845-008-0084-1.
[12] ESFANDYARI M,FANAEI M A,ZOHREIE H. Adaptive fuzzy tuning of PID controllers[J].Neural Computing & Applications,2013,23(supp11):S19-S28.DOI:10.1007/S00521-012.1215-8.
[13] MERRITT H E. Hydraulic control systems[M].New York: Wiley Inc.,1967:165-169.
[14] CHEN C Y, LIU L Q,CHENG C C,et al. Fuzzy controller design for synchronous motion in a dual-cylinder electro-hydraulic system[J].Control Engineering Practice,2008(16):658-673.DOI:10.1016/j.conengprac.2007.08.005.
[15] WATTON J.Fluid power systems, modeling, simulation, analog and microcomputer control[M] Englewood Cliffs:Prentice Hall International,1989:195-210.
[16] 薛定宇.控制系统计算机辅助设计-MATLAB语言及应用[M].3版:北京:清华大学出版社,2012:416-420. XUE D Y.Computer aided control systems design-using MATLAB language[M].3th ed. Beijing:Tsinghua University Press,2012:416-420.

Last Update: 2017-01-30