我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

植物养分重吸收及其影响研究进展(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年01期
Page:
183-188
Column:
综合述评
publishdate:
2017-01-31

Article Info:/Info

Title:
Review of nutrient resorption and its regulating in plants
Article ID:
1000-2006(2017)01-0183-06
Author(s):
JIANG Dalong XU Xia* RUAN Honghua*
Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037,China
Keywords:
nutrient resorption conservation strategy plant life form stand age climatic factor soil fertility
Classification number :
S718; Q89
DOI:
10.3969/j.issn.1000-2006.2017.01.028
Document Code:
A
Abstract:
【Objective】Nutrient Resorption(NR)is an important essential processes of plant nutrient cycling. It means that the nutrients are resorbed during plant senescence and then conserved or reused for future plant growth. The overall understanding of the patterns and controlling factors of NR is important for improving the modeling of plant nutrient cycling. 【Method】By collecting published literatures, we explored how different that life forms, stand ages, and abiotic factors(including climate and soil fertility)affect plant’s NR. 【Result】①While non-woody plants exhibited enhancing plasticity in their expression of nutrient resorption along soil fertility gradients, and NR in woody plants was typically lower than in non-woody plants in senescing stems and roots. Evergreen species had lower NR than that in deciduous plants. ② Young stands had relatively higher nitrogen resorption efficiency(NRE(N)), while old stands resorbed more phosphorus(P). ③ In general, phosphorus resorption efficiency(NRE(P))increased and nitrogen resorption efficiency(NRE(N))decreased with increasing temperature and precipitation. ④ Extreme climate events such as droughts, floods, and hurricanes significantly influenced NR. ⑤ Increasing soil fertility tended to lower NR. In comparison to foliage, NR in stems and roots of woody plants was less studied. Additionally, we have limited knowledge on plants’ resorption of minor elements compared with nitrogen(N)and phosphorus(P). Moreover, the number of studies on energy consumption during NR and the impacts of long-term climate change on NR is lack of study. 【Conclusion】NR is one of the essential processes of plant nutrient cycling. A better understanding of NR could contribute to the development of the global climate change models and accurate projection of future climate.

References

[1] FOSTER N W, BHATTI J S.Forest ecosystems:nutrient cycling[J]. Encyclopedia of Soil Science, 2006(2):718-721. DOI:10.1081/E-ESS-120001709.
[2] AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns[J]. Advances in Ecological Research, 1999: 1-67. DOI:10.1016/s0065-2504(08)60016-1.
[3] CHAPIN F S, MOILANEN L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J]. Ecology, 1991, 72(2): 709-715. DOI:10.2307/2937210.
[4] CHAPIN Ⅲ F S, MATSON P A, VITOUSEK P M. Decomposition and ecosystem carbon budgets[M]. New York:Springer Science & Business Media, 2012.
[5] JACKSON R B, MANWARING J H, CALDWELL M M. Rapid physiological adjustment of roots to localized soil enrichment[J]. Nature, 1990, 344(6261): 58-60. DOI:10.1038/344058a0.
[6] CHADWICK O A, DERRY L A, VITOUSEK P M, et al. Changing sources of nutrients during four million years of ecosystem development[J]. Nature, 1999, 397(6719):491-497.
[7] VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205-220. DOI:10.1890/11-0416.1.
[8] AERTS R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. The Journal of Ecology, 1996, 84(4): 597. DOI:10.2307/2261481.
[9] KILLINGBECK K T. The terminological jungle revisited: making a case for use of the term resorption[J]. Oikos, 1986, 46(2): 263. DOI:10.2307/3565477.
[10] BRANT A N, CHEN H Y H. Patterns and mechanisms of nutrient resorption in plants[J]. Critical Reviews in Plant Sciences, 2015, 34(5): 471-486. DOI:10.1080/07352689.2015.1078611.
[11] MAO R, SONG C C, ZHANG X H, et al. Response of leaf, sheath and stem nutrient resorption to 7 years of N addition in fresh water wetland of Northeast China[J]. Plant Soil,2012, 364(1): 385-394. DOI:10.1007/s11104-012-1370-9.
[12] FRESCHET G T, CORNELISSEN J H, VAN LOGTESTJIN R S, et al. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits[J]. New Phytol, 2010, 186(4): 879-889. DOI:10.1111/j.1469-8137.2010.03228.x.
[13] KILLINGBECK K T. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency[J]. Ecology, 1996, 77(6): 1716-1727. DOI:10.2307/2265777.
[14] VERGUTZ L, MANZONI S, PORPORATO A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J].Ecological Monographs, 2012, 82(2): 205-220. DOI:10.1890/11-0416.1.
[15] MAY J D, KILLNGBECK K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics[J]. Ecology, 1992, 73(5): 1868-1878. DOI:10.2307/1940038.
[16] 邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报, 2000, 11(5):785-790, DOI:10.13287/j.1001-9332.2000.0189. XING X R, HAN X G, CHEN L Z. A review on research of plant nutrient use efficiency [J]. Chinese Journal of Applied Ecology, 2000, 11(5):785-790.
[17] 廖利平. 国外林木养分内循环研究 [J]. 生态学杂志, 1994(6):34-38, DOI: 10.13292/j.1000 -4890. 1994. 0091. LIAO L P. Overseas researches on within -tree nutrient cycling [J]. Chinese Journal of Ecology, 1994(6):34-38.
[18] YUAN Z Y, LI L H, HAN X G, et al. Soil characteristics and nitrogen resorption in Stipa krylovii native to northern China[J]. Plant Soil, 2005, 273(1): 257-268. DOI:10.1007/s11104-004-7941-7.
[19] MCGRODDY M E, DAUFRESNE T, HEDIN L O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios[J]. Ecology, 2004, 85(9): 2390-2401. DOI:10.1890/03-0351.
[20] RYAN M G, HUBBARD R M, PONGRACIC S, et al. Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status[J]. Tree Physiol, 1996, 16(3): 333-343. DOI:10.1093/treephys/16.3.333.
[21] CHEN H Y H, BRASSARD B W. Intrinsic and extrinsic controls of fine root life span[J]. Critical Reviews in Plant Sciences, 2013, 32(3): 151-161. DOI:10.1080/07352689.2012.734742.
[22] YUAN Z Y, CHEN H Y H. Global trends in senesced-leaf nitrogen and phosphorus[J]. Global Ecologyand Biogeography, 2009, 18(5): 532-542. DOI:10.1111/j.1466-8238.2009.00474.x.
[23] ORDONEZ J C, Van BODEGOM P M, WITTE J P, et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply[J]. Ecology, 2010, 91(11): 3218-3228. DOI:10.1890/09-1509.1.
[24] SARDANS J, PENUELAS J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood[J]. Global Ecology and Biogeography, 2012, 22(4): 494-507. DOI:10.1111/geb.12015.
[25] YUAN Z Y, CHEN H Y H, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nat Commun, 2011, 2: 344. DOI:10.1038/ncomms1346.
[26] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1): 30-50. DOI:10.1111/j.1469-8137.2011.03952.x.
[27] Lü X T, HAN X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China[J]. Plant Soil,2009, 327(1): 481-491. DOI:10.1007/s11104-009-0078-y.
[28] Van HEENWAARDEN L M, TOET S, AERTS R. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions[J]. Oikos, 2003, 101(3): 664-669. DOI:10.1034/j.1600-0706.2003.12351.x.
[29] GUSEWELL S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation[J]. Functional Ecology, 2005, 19(2): 344-354. DOI:10.1111/j.0269-8463.2005.00967.x.
[30] AERTS R, BERENDSE F. Above-ground nutrient turnover and net primary production of an evergreen and a deciduous species in a heathland ecosystem[J]. The Journal of Ecology, 1989, 77(2): 343. DOI:10.2307/2260754.
[31] TANG L, HAN W, CHEN Y, et al. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China[J].Journal of Plant Ecology, 2013, 6(5): 408-417. DOI:10.1093/jpe/rtt013.
[32] GOWER S T, KRANKINA O, OISON R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11(5): 1395. DOI:10.2307/3060928.
[33] COSTA T L,SAMPAIO E V S B, SALES M F, et al. Root and shoot biomasses in the tropical dry forest of semi-arid Northeast Brazil[J]. Plant Soil, 2014, 378(1): 113-123. DOI:10.1007/s11104-013-2009-1.
[34] RYAN M G, BINKLEY D, FOWNES J H. Age-related decline in forest productivity: pattern and process[J]. Advances in Ecological Research, 1997,27(8): 213-262. DOI:10.1016/s0065-2504(08)60009-4.
[35] YUAN Z Y, CHEN H Y H. Fine root dynamics with stand development in the boreal forest[J].Functional Ecology, 2012, 26(4): 991-998. DOI:10.1111/j.1365-2435.2012.02007.x.
[36] STEPHENSON N L, DAS A J, CONDIT R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507(7490): 90-93. DOI:10.1038/nature12914.
[37] 邓浩俊, 陈爱民, 严思维,等. 不同林龄新银合欢重吸收率及其C:N:P化学计量特征 [J]. 应用与环境生物学报, 2015, 21(3): 522-527, DOI: 10.3724/SP.J.1145.2014.11032. DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C:N:P stoichiometry in different ages of Leucaena leucocephala [J]. Chinese Journal of Applied & Environmental Biology, 2015, 21(3): 522-527.
[38] 李荣华, 汪思龙, 王清奎. 不同林龄马尾松针叶凋落前后养分含量及回收特征 [J]. 应用生态学报, 2008, 19(7):1443-1447, DOI:10.13287/j.1001-9332.2008.0288. LI R H, WANG S L, WANG Q K. Nutrient contents and resorption characteristics in needles of different age Pinus massoniana Lamb. before and after withering [J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1443-1447.
[39] 庄亚珍. 不同林龄马尾松针叶养分含量及其再吸收效率 [J]. 安徽农学通报, 2010, 16(18):27-28, 52.DOI: 10.3969/j.issn.1007-7731.2010.18.012. ZHUANG Y Z. Nutrients and their resorption efficiencies in leaves of Pinus massoniana of different ages [J]. Anhui Agricultural Science Bulletin, 2010, 16(18): 27-28,52.
[40] YUAN Z Y, CHEN H Y H. Changes in nitrogen resorption of trembling aspen(Populus tremuloides)with stand development[J]. Plant Soil, 2009, 327(1): 121-129. DOI:10.1007/s11104-009-0036-8.
[41] YANG Y, LUO Y. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2010, 20(2): 354-361. DOI:10.1111/j.1466-8238.2010.00602.x.
[42] KOBE R K, LEPCZYK C A, LYER M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J].Ecology, 2005, 86(10): 2780-2792. DOI:10.1890/04-1830.
[43] LI Y, CHEN J, CUI J, et al. Nutrient resorption in Caragana microphylla along a chronosequence of plantations: implications for desertified land restoration in North China[J]. Ecological Engineering, 2013, 53: 299-305. DOI:10.1016/j.ecoleng.2012.12.061.
[44] YE G F, ZHANG S J, ZHANG L H, et al. Age-related changes in nutrient resorption patterns and tannin concentration of Casuarina equisetifolia plantations[J]. Journal of Tropical Forest Science, 2012(4): 546-556.
[45] YUAN Z Y, CHEN H Y H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation[J]. Global Ecologyand Biogeography, 2009, 18(1): 11-18. DOI:10.1111/j.1466-8238.2008.00425.x.
[46] YUAN Z Y, CHEN H Y H. A global analysis of fine root production as affected by soil nitrogen and phosphorus[J]. Proc Biol Sci, 2012, 279(1743): 3796-3802. DOI:10.1098/rspb.2012.0955.
[47] BOERNER R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. The Journal of Applied Ecology, 1984, 21(3): 1029. DOI:10.2307/2405065.
[48] YUAN Z Y, CHEN H Y H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes[J].Nature Climate Change, 2015, 5(5): 465-469. DOI:10.1038/nclimate2549.
[49] SARDANS J, PENUELAS J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiol, 2012, 160(4): 1741-1761. DOI:10.1104/pp.112.208785.
[50] DDLGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7473): 672-676. DOI:10.1038/nature12670.
[51] NORBY R J, WARREN J M, IVERSEN C M, et al. CO2 enhancement of forest productivity constrained by limited nitrogen availability[J].Proceedings of the National Academy of Sciences, 2010, 107(45): 19368-19373. DOI:10.1073/pnas.1006463107.
[52] BASSIRIRAD H. Kinetics of nutrient uptake by roots: responses to global change[J]. New Phytologist, 2000, 147(1): 155-169. DOI:10.1046/j.1469-8137.2000.00682.x.
[53] PENUELAS J, POULTER B, SARDANS J, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nat Commun, 2013, 4: 2934. DOI:10.1038/ncomms3934.
[54] CHAPIN Ⅲ F S, JOHNSON D A, MCKENDRICK J D. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory[J]. The Journal of Ecology, 1980, 68(1): 189. DOI:10.2307/2259251.
[55] MAYOR J R, WRIGHT S J, TURNER B L. Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest[J].J Ecol, 2013, 102(1): 36-44. DOI:10.1111/1365-2745.12190.
[56] HOLUB P, TüMA I. The effect of enhanced nitrogen on aboveground biomass allocation and nutrient resorption in the fern Athyrium distentifolium[J]. Plant Ecol, 2009, 207(2): 373-380. DOI:10.1007/s11258-009-9681-5.
[57] 安卓, 牛得草, 文海燕, 等. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801-807. DOI:10.3724/SP.J.1258.2011.00801. AN Z, NIU D C, WEN H Y, et al. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in stipa bungeana of steppe grasslands in the loess plateau, china[J]. Chinese Journal of Plant Ecology, 2011, 35(8): 801-807. DOI:10.3724/SP.J.1258.2011.00801.
[58] 赵琼, 刘兴宇, 胡亚林,等. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5):14-19, DOI::1001-7488(2010)05-0014-06. ZHAO Q, LIU X Y, HU Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Scientia Silvae Sinicae, 2010, 46(5):14-19.
[59] GOODMAN R C, OLIET J A, SLOAN J L, et al. Nitrogen fertilization of black walnut(Juglans nigra L.)during plantation establishment physiology of production[J]. European Journal of Forest Research, 2013, 133(1): 153-164. DOI:10.1007/s10342-013-0754-6.
[60] AGREN G I, WEIH M. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype[J]. New Phytol, 2012, 194(4): 944-952. DOI:10.1111/j.1469-8137.2012.04114.x.
[61] HAN W, TANG L, CHEN Y, et al. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants[J].PLoS One, 2013, 8(12): e83366. DOI:10.1371/journal.pone.0083366.
[62] SOKOLOV A P, KICKLIGHTER D W, MELILLO J M, et al. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle[J]. Journal of Climate, 2008, 21(15): 3776-3796. DOI:10.1175/2008jcli2038.1.
[63] WOOD T E, LAWRENCE D, WELLS J A. Inter-specific variation in foliar nutrients and resorption of nine canopy-tree species in a secondary neotropical rain forest[J]. Biotropica, 2011(5): 544-551. DOI:10.1111/j.1744-7429.2010.00740.x.
[64] MANZONI S, TROFYMOW J A, JACKSON R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter[J].Ecological Monographs, 2010, 80(1): 89-106. DOI:10.1890/09-0179.1.
[65] YUAN Z Y, LI L H, HAN X G, et al. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China[J].Journal of Arid Environments, 2005, 63(1): 191-202. DOI:10.1016/j.jaridenv.2005.01.023.
[66] GORDON W S, JACKSON R B. Nutrient concentrations in fine roots[J].Ecology, 2000, 81(1): 275-280. DOI:10.1890/0012-9658(2000)081[0275:ncifr]2.0.co; 2.
[67] THORNTON P E, LAMARQUE J F, ROSENBLOOM N A, et al. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability [J]. Global Biogeochem Cycles, 2007, 21(4): DOI:10.1029/2006gb002868.

Last Update: 2017-01-30