我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

岸线形态与近岸底泥元素分布特征的相关性分析(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
9-14
Column:
专题报道
publishdate:
2017-03-23

Article Info:/Info

Title:
Relationship between shoreline morphology and elements distribution in near-shore sediments
Article ID:
1000-2006(2017)02-0009-06
Author(s):
YUAN Fang1 CHEN Huaiyan1 KANG Xin1 SHENG Sheng2 XU Chi1 LIU Maosong1*
1.School of Life Science, Nanjing University, Nanjing 210046, China;
2.PowerChina Huadong Engineering Corporation Limited, Hangzhou 310014, China
Keywords:
shoreline morphology ecological restoration redundancy analysis sediments grain size structure the Taihu Lake
Classification number :
X524
DOI:
10.3969/j.issn.1000-2006.2017.02.002
Document Code:
A
Abstract:
【Objective】The association between shoreline morphology and distribution patterns of elements in near-shore sediments is significant for riparian ecological restoration as shoreline morphology can influence physical and chemical characteristics of near-shore sediments by affecting hydrodynamic conditions, sedimentary processes, microhabitats and vegetation characteristics. 【Method】Here, we collected surface sediments from three shoreline areas with distinct morphological shapes(i.e., concave, convex and straight), at three water-depth gradients in the “Returning Embankment to Lake Area Projection” area in Gonghu Bay, the Taihu Lake. 【Result】 ① The size structure of sediments across the water-depth gradients showed large differences at the concave and convex shorelines, but only smaller differences at the straight shoreline. The size structure showed different trends for the three types of shoreline morphology. The mean grain size of the convex shoreline increased with increasing depth of the water, but decreased with water depth at the concave shoreline. ② The variation in total nitrogen(TN), total phosphorus(TP)and organic carbon(OC)content across the three water-depth gradient zones was generally greater at the concave and convex shorelines than at the straight shoreline. The TN and OC content was the highest in deep water at concave and convex shorelines, and TP content was the lowest in shallow water at the convex shoreline. ③ The redundancy analysis showed that shoreline morphology and vegetation status(i.e., vegetation types, water depth and vegetation coverage)were the main factors influencing TN, TP and OC content, whereas the size structure characteristics of sediments was the least influential factor. 【Conclusion】The curved shorelines increased the heterogeneity of sediment in different water-depth gradient zones, which exerted a significant influence on the spatial distribution patterns of elements in sediments. Therefore, constructing relatively curved shorelines can affect the redistribution of TN, TP and OC, thereby promoting riparian ecological restoration.

References

[1] GULATI R D, PIRES L M D, DONK E V. Lake restoration studies: failures, bottlenecks and prospects of new eco-technological measures [J]. Limnologica-Ecology and Management of Inland Waters, 2008, 38(3-4): 233-247.DOI:10.1016/j.limno.2008.05.008.
[2] HEFTING M M, CLEMENT J C, BIENKOWKI P, et al. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe [J]. Ecological Engineering, 2005, 24(5): 465-482.DOI:10.1016/j.ecoleng.2005.01.003.
[3] 李春华, 叶春, 赵晓峰, 等. 太湖湖滨带生态系统健康评价 [J]. 生态学报, 2012, 32(12): 3806-3815.DOI: 10.5846/stxb201109281430.LI C H, YE C, ZHAO X F, et al. The ecosystem health assessment of the littoral zone of Lake Taihu [J]. Acta Ecologica Sinica, 2012, 32(12): 3806-3815.
[4] KELDERMAN P, KANSIIME F, TOLA M A, et al. The role of sediments for phosphorus retention in the Kirinya wetland(Uganda)[J]. Wetlands Ecology & Management, 2007, 15(6): 481-488.DOI: 10.1007/s11273-007-9048-4.
[5] 潘文斌, 黎道丰, 唐涛, 等. 湖泊岸线分形特征及其生态学意义 [J]. 生态学报, 2003, 23(12): 2728-2735.DOI:10.3321/j.issn:1000-0933.2003.12.028.PAN W B, LI D F, TANG T, et al. The fractal character of lake shoreline and its ecological implication [J]. Acta Ecologica Sinica, 2003, 23(12):2728-2735.
[6] XU X W, CHEN C R, WAN F X, et al. Effects of aquatic plants on the feature of sediment resuspension in Lake Taihu [J]. Agricultural Science & Technology, 2012, 13(1): 206-210.DOI:10.3969/j.issn.1009-4229-B.2012.01.050.
[7] 陈昌仁. 不同水动力下水生植物群落底泥磷素迁移特征 [D]. 南京: 南京林业大学, 2011.CHEN C R. Sediment phosphorus migration feature in aquatic plant community under different hydrodynamic conditions [D]. Nanjing: Nanjing Forestry University, 2011.
[8] H?KANSON L, PARPAROV A, HAMBRIGHT K D. Modelling the impact of water level fluctuations on water quality(suspended particulate matter)in Lake Kinneret, Israel [J]. Ecological Modelling, 2000, 128(2): 101-125.DOI:10.1016/S0304-3800(00)00200-3.
[9] 姚鑫, 杨桂山, 万荣荣, 等. 水位变化对河流、湖泊湿地植被的影响 [J]. 湖泊科学, 2014, 26(6): 813-821.DOI:10.1830712014.0601.YAO X, YANG G S, WAN R R, et al. Impact of water level change on wetland vegetation of rivers and lakes [J]. Journal of Lake Sciences, 2014, 26(6): 813-821.
[10] 白晓华, 胡维平. 太湖水深变化对氮磷浓度和叶绿素a浓度的影响 [J]. 水科学进展, 2006, 17(5): 727-732.DOI:10.3321/j.issn:1001-6791.2006.05.023.BAI X H, HU W P. Effect of water depth on concentration of TN, TP and Chla in Taihu Lake [J]. Advances in Water Science, 2006, 17(5):727-732.
[11] 甘树, 卢少勇, 秦普丰, 等. 太湖西岸湖滨带沉积物氮磷有机质分布及评价[J]. 环境科学, 2012, 33(9): 3064-3069. GAN S, LU S Y, QIN P F, et al. Spatial distribution and evaluation of nitrogen, phosphorus and organic matter in surface sediments from western lakeside belt of Lake Taihu [J]. Environmental Science, 2012, 33(9): 3064-3069.
[12] 汪祖茂, 蒋丽佳, 卢少勇, 等. 贡湖湾水陆交错带中磷污染现状研究[J]. 环境科学与技术, 2013, 36(S2): 47-51.DOI:10.3969/j.issn.1003-6504.2013.12M.010.WANG Z M, JING L J, LU S Y, et al. Study of current situation of phosphorus pollution of land water ecotone in Gonghu Bay [J]. Environmental Science & Technology, 2013, 36(S2):47-51.DOI:10.3969/j.issn.1003-6504.2013.12M.010.
[13] YANG S L, LI H, YSEBAERT T,et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls [J]. Estuarine Coastal & Shelf Science, 2008, 77(4): 657-671.DOI:10.1016/j.ecss.2007.10.024.
[14] 顾成军, 戴雪荣, 张海林, 等. 巢湖沉积物粒度特征与沉积环境 [J]. 海洋地质动态, 2004, 20(10): 10-13.DOI:10.16028/j.1009-2722.2004.10.003.GU C J, DAI X R, ZHANG H L, et al. Grain size characteristics and sedimentary environment of the Chaohu Lake sediments [J]. Marine Geology Letters, 2004, 20(10):10-13.
[15] FORK R. Brazos river bar: a study in the significance of grain size parameters [J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.DOI:10.1306/74D70646-2B21-11D7-8648000102C1865D.
[16] BRAAK C J F T, PRENTICE I C. A theory of gradient analysis [J]. Advances in Ecological Research, 1988, 18: 271-317.DOI:10.1016/S0065-2504(08)60183-X.
[17] 王伟, 李安春, 徐方建, 等. 北黄海表层沉积物粒度分布特征及其沉积环境分析 [J]. 海洋与湖沼, 2009, 40(5): 525-531. DOI:10.3321/j.issn:0029-814X.2009.05.001.WANG W, LI A C, XU F J, et al. Distribution of surface sediment and sedimentary environment in the North Yellow Sea [J]. Oceanologia et Limnologia Sinica, 2009, 40(5): 525-531.
[18] 王兆夺, 于东生. 泉州湾表层沉积物粒度特征分析 [J]. 应用海洋学学报, 2015, 34(3): 326-333.DOI:10.3969/J.ISSN.2095-4972.2015.03.004.WANG Z D, YU D S. Characteristics of grain sizes in surface sediments of Quanzhou Bay [J]. Journal of Applied Oceanography, 2015, 34(3):326-333.
[19] 倪兆奎, 李跃进, 王圣瑞, 等. 太湖沉积物有机碳与氮的来源 [J]. 生态学报, 2011, 31(16): 4661-4670.NI Z K, LI Y J, WANG S R, et al. The sources of organic carbon and nitrogen in sediment of Taihu Lake [J]. Acta Ecologica Sinica, 2011, 31(16): 4661-4670.
[20] 向速林, 朱梦圆, 朱广伟, 等. 太湖东部湖湾水生植物生长区底泥氮磷污染特征 [J]. 沉积学报, 2014, 32(6): 1083-1088.XIANG S L, ZHU M Y, ZHU G W, et al.Pollution characteristics of nitrogen and phosphorus in sediment of the eastern bays of Lake Taihu with aquatic macrophytes [J]. Acta Sedimentologica Sinica, 2014,32(6): 1083-1088.
[21] 李一平, 逄勇, 吕俊, 等. 水动力条件下底泥中氮磷释放通量 [J]. 湖泊科学, 2004, 16(4): 318-324.DOI:10.18307/2004.0405.LI Y P, PANG Y, LYU J, et al. On the relation between the release rate of TN, TP from sediment and water velocity [J]. Journal of Lake Sciences, 2004, 16(4): 318-324.
[22] 张路, 范成新, 秦伯强, 等. 模拟扰动条件下太湖表层沉积物磷行为的研究 [J]. 湖泊科学, 2001, 13(1): 35-42.DOI:10.18307/20010106.ZHANG L, FAN C X, QIN B Q, et al. Phosphorus release and absorption of surficial sediments in Taihu Lake under simulative disturbing conditions [J]. Journal of Lake Sciences, 2001, 13(1): 35-42.
[23] 蔡景波, 丁学锋, 彭红云, 等. 环境因子及沉水植物对底泥磷释放的影响研究 [J]. 水土保持学报, 2007, 21(2): 151-154.DOI:10.3321/j.issn:1009-2242.2007.02.038.CAI J B, DING X F, PENG H Y, et al. Impact of environmental factors and submerged plant on phosphate release from sediment [J]. Journal of Soil and Water Conservation, 2007, 21(2): 151-154.
[24] DELANEY T P, WEBB J W, MINELLO T J. Comparison of physical characteristics between created and natural estuarine marshes in Galveston Bay, Texas [J]. Wetlands Ecology & Management, 2000, 8(5): 343-352.DOI: 10.1023/A:1008439420830.

Last Update: 2017-03-23