我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

模拟干旱环境下伐桩注水对毛竹光合蒸腾特性的影响(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
47-54
Column:
研究论文
publishdate:
2017-03-23

Article Info:/Info

Title:
Effects of stump water storage on the photosynthesis and transpiration characteristics of Phyllostachys heterocycla cv. Pubescens under a simulated drought environment
Article ID:
1000-2006(2017)02-0047-08
Author(s):
ZHANG Lei XIE Jinzhong* ZHANG Wei JI Linke DU Lan CHEN Sheng
Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China
Keywords:
Phyllostachys heterocycla cv. Pubescens simulated drought environment photosynthesis and transpiration characteristics environmental factors correlation analysis path analysis
Classification number :
S795; S725
DOI:
10.3969/j.issn.1000-2006.2017.02.008
Document Code:
A
Abstract:
【Objective】This study examined the effect of stump water storage on the photosynthesis and transpiration characteristics of Phyllostachys heterocycla cv. Pubescens(moso bamboo)under a simulated drought environment, and the relationships between net photosynthetic rate, transpiration rate and environmental factors. The objective of the study was to provide a theoretical reference for water-saving irrigation in moso bamboo forest. 【Method】The experiment included three different irrigation treatments:CK(0 stumps with water storage), T1(12 stumps with water storage)and T2(18 stumps with water storage), the physiological parameters of photosynthesis and transpiration of 2-year-old moso bamboo and the main environmental factors of stands were measured. 【Result】 ① The trends of net photosynthetic(Pn)and transpiration rate(Tr)of moso bamboo in the day were consistent. Both could be presented as unimodal curves and the “photosynthetic noon break” phenomenon could not be detected. The net photosynthetic and transpiration rates of moso bamboo increased with an increase in the number of water storage stumps. ② For the three treatments, the water-use efficiency(EWUE)of moso bamboo was shown as a bimodal curve. With an increase in the number of water storage stumps, there was a decrease in the water-use efficiency of moso bamboo. ③ Environmental factors played different roles in moso bamboo net photosynthetic rate with different treatments. For example, in CK, the most important direct environmental factor influencing net photosynthesis rate was air relative humidity(φ), whereas for T1 and T2, it was photosynthetically active radiation(RPAR). However, for transpiration rate, the environmental factor with the largest influence in all treatments was atmospheric CO2 concentration(Ca). ④ For all treatments, the variable having the largest influence on net photosynthetic rate and transpiration rate was RPAR. For T1 and T2 treatments, the main variables limiting net photosynthetic and transpiration rates were air temperature(ta)and φ, whereas for the CK treatment, they were φ and Ca. 【Conclusion】The net photosynthetic rate and transpiration rate of moso bamboo was positively correlated with the number of stumps with water storage, whereas the water-use efficiency of moso bamboo was negatively correlated with the number of stumps with water storage. An increase in the number of stumps with water storage significantly enhanced the photosynthetic and transpiration capacity of moso bamboo, and also enhanced the accumulation of photosynthetic products in moso bamboo. Moreover, the number of stumps with water storage modified the influence of environmental factors on the net photosynthetic rate and transpiration rate of moso bamboo under different treatments.

References

[1] TRENBERTH K E. Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694. DOI: 10.1023/A:1005319109110.
[2] GUO H F, ZENG F J, ARNDT S K, et al. Influence of floodwater irrigation on vegetation composition and vegetation regeneration in a Taklimakan desert oasis[J]. Chinese Science Bulletin, 2008, 53(2): 156-163. DOI: 10.1007/s11434-008-6018-z.
[3] 王磊, 张彤, 丁圣彦. 干旱和复水对大豆光合生理生态特性的影响[J]. 生态学报, 2006, 26(7): 2073-2078. DOI: 10.3321/j.issn:1000-0933.2006.07.003. WANG L, WANG T, DING S Y. Effect of drought and rewatering on photosynthetic physioecologica characteristics of soybean[J]. Acta Ecologica Sinica, 2006, 26(7): 2073-2077.
[4] 肖春旺, 周广胜. 不同浇水量对毛乌素沙地沙柳幼苗气体交换过程及其光化学效率的影响[J]. 植物生态学报, 2001, 25(4): 444-450. DOI: 10.3321/j.issn:1005-264X.2001.04.011. XIAO C W, ZHOU G S. Effect of different water supply on gas exchange processes and photochemical efficiency in Salix psammophlia seedlings in the maowusu sandland[J]. Acta Phytoecologica Sinica, 2001, 25(4): 444-450.
[5] 黄占斌, 山仑. 不同供水下作物水分利用效率和光合速率日变化的时段性及其机理研究[J]. 华北农学报, 1999, 14(1): 47-52. DOI: 10.3321/j.issn:1000-7091.1999.01.010.
[6] 邱尔发, 洪伟, 郑郁善. 中国竹子多样性及其利用评述[J]. 竹子研究汇刊, 2001, 20(2): 11-14. DOI: 10.3969/ j.issn.1000-6567.2001.02.004. QIU E F, HONG W, ZHENG Y S. Review on diversity and utilization of bamboo in China[J]. Journal of Bamboo Research, 2001, 20(2): 11-14.
[7] 郭子武, 陈双林, 季赛娟, 等. 毛竹伐蔸根系养分含量、抗氧化能力与伐后年数的关系[J]. 林业科学研究, 2016,29(3): 402-406. DOI: 10.3969/j.issn.1001-1498.2016.03.014. GUO Z W, CHEN S L, JI S J, et al. Annual variation of nutrient stoichiometry and resistance Phyllostachys edulis stump roots[J]. Forest Research, 2016, 29(3): 402-406.
[8] 林连光. 毛竹林内竹蔸分布及其促腐情况的调查分析[J]. 世界竹藤通讯, 2011, 9(3): 57-59. DOI: 10.3969/j.issn.1672-0431.2011.03.015. LIN L G. A preliminary study of distribution and rotting speed of bamboo stump in Phyllostachys heterocycla var. pubescens forest[J]. World Bamboo and Rattan, 2011, 9(3): 57-59.
[9] 刘婧婧, 傅万四. 伐后竹蔸清理技术研究[J]. 林业机械与木工设备, 2011, 39(4): 15-17.DOI: 10.3969/j.issn.2095-2953.2011.04.003 LIU J J, FU W S. The study of cleaning technology on bamboo roots[J]. Forestry Machinery and Woodworking Equipment, 2011, 39(4): 15-17.
[10] 汤万辉. 毛竹林竹蔸腐烂对土壤理化性质的影响[J]. 世界竹藤通讯, 2013, 11(2): 31-33. DOI: 10.3969/j.issn. 1672-0431.2013.02.008. TANG W H. Effect of bamboo stump rotting on soil physicochemical properties[J]. World Bamboo and Rattan, 2013, 11(2): 31-33.
[11] 翁甫金, 汪奎宏, 何奇江, 等. 毛竹伐桩快速腐烂技术试验研究[J]. 竹子研究汇刊, 2001, 20(4): 47-51. DOI: 10.3969/j.issn.1000-6567.2001.04.010. WONG F J, WANG K H, HE Q J, et al. Research on experiment of fast rotten technology on bamboo stake[J]. Journal of Bamboo Research, 2001, 20(4): 47-51.
[12] 华文礼, 吴礼栋. 毛竹竹篼促腐技术研究初报[J]. 林业科技开发, 2000, 14(1): 38-39.
[13] 朱颜, 龙海艳, 楼崇, 等. 竹蔸促腐技术研究[J]. 竹子研究汇刊, 2013, 32(3): 53-57. DOI: 10.3969/j.issn.1000-6567.2013.03.012. ZHU Y, LONG H Y, LOU C, et al. The technology to promote the decay of bamboo stumps[J]. Journal of Bamboo Research, 2013, 32(3): 53-57.
[14] 李超, 李潞滨, 杨凯, 等. 竹伐桩促腐微生物的分离筛选[J]. 林业科学研究, 2008, 21(2): 253-257. DOI: 10.332 1/j.issn:1001-1498.2008.02.022. LI C, LI L B, YANG K, et al. Isolating and screening of microoganisms for decomposing bamboo stump[J]. Forest Research, 2008, 21(2): 253-257.
[15] 王忠芝, 张金瑞. 基于图像处理的叶面积测量方法[J]. 微计算机应用, 2010, 31(5):68-72. DOI: 10. 3969 /j.issn. 2095-347X.2010.05.014. WANG Z Z, ZHANG J R. A measurement approach of leaf area based on digital image processing[J]. Microcomputer Applications, 2010, 31(5): 68-72.
[16] 吴俊文, 刘珊, 李吉跃, 等. 干旱胁迫下广东石漠化地区造林树种光合和耗水特性[J]. 生态学报, 2016, 36(11): 3429-3440. DOI: 10.5846/stx b201505060937. WU J W, LIU S, LI J Y, et al. Photosynthetic and water consumption of tree speciesutilized for afforestation of rocky desert in Guangdong Province[J]. Acta Ecologica Sinica,2016,36(11):3429-3440.
[17] 张征坤, 张光灿, 刘顺生, 等. 土壤水分对山杏光合作用日变化过程的影响[J]. 中国水土保持科学, 2012, 10(3): 99-104. DOI: 10.3969/j.issn.1672-3007.2012.03.016. ZHANG Z K, ZHANG G C, LIU S S, et al. Effects of soil moisture on photosynthesis diurnal changes of Prunus sibirica L.[J]. Science of Soil and Water Conservation, 2012, 10(3): 99-104.
[18] 周珺, 魏虹, 吕茜, 等. 土壤水分对湿地松幼苗光合特征的影响[J]. 生态学杂志, 2012, 31(1): 30-37. ZHOU J, WEI H, LYU Q, et al. Effects of soil water regime on leaf photosynthetic characteristics of slash pin(Pinus elliottii Engelm.)seedling.[J]. Chinese Journal of Ecology, 2012, 31(1): 30-37.
[19] 杨文权, 顾沐宇, 寇建村, 等. 干旱及复水对小冠花光合及叶绿素荧光参数的影响[J]. 草地学报, 2013, 21(6): 1130-1135. DOI: 10.11733/j.iss n.1007-0435.2013.06.015. YANG W Q, GU M Y, KOU J C, et al. Effects of drought and rewatering on the photosynthesis and chlorophyll fluorescence of Coronilla varia[J]. Acta Agrestia Sinica, 2013, 21(6): 1130-1135.
[20] 彭素琴, 刘郁林, 谢双喜. 土壤干旱胁迫对不同品种金银花维持水分平衡能力的影响[J]. 湖北农业科学, 2011, 50(6): 1119-1121. DOI: 10.39 69/j.issn.0439-8114.2011.06.013. PENG S Q, LIU Y L, XIE S X. Effect of soil drought stress on water balance maintaining of dfferent varieties of Flos lonicerace[J]. Hubei Agricultural Sciences, 2011, 50(6): 1119-1121.
[21] 刘明虎, 辛智鸣, 徐军, 等. 干旱区植物叶片大小对叶表面蒸腾及叶温的影响[J]. 植物生态报, 2013, 37(5): 436-442. DOI: 10.3724/SP.J.1258.2013.00045. LIU M H, XIN Z M, XU J, et al. Influence of leaf size of plant on leaf transpiration and temperature in arid regions[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 436-442.
[22] 邹君, 杨玉蓉, 谢小立. 不同水分灌溉下的水稻生态效应研究[J]. 湖南农业大学学报(自然科学版), 2004, 30(3):212-215. DOI: 10.3321/j.issn: 1007-1032.2004.03.004. ZOU J, YANG Y R, XIE X L. On physiological effect on paddy in different mode of irrigation[J]. Jounal of Hunan Agricultural University(Natural Sciences), 2004, 30(3): 212-215.
[23] 朱军涛, 李向义, 张希明. 灌溉对疏叶骆驼刺(Alhagi sparsifolia)幼苗光合生理指标及渗透物质的影响[J]. 中国沙漠, 2009, 29(4): 697-702. ZHU J T, LI X Y, ZHANG X M. Effect of irrigation on photosynthetic physiology characteristics and osmolytes of Alhagi sparsifolia[J]. Journal of Desert Research, 2009, 29(4): 697-702.
[24] HOYAUX J, MOUREAUX C, TOURNEUR D, et al. Extrapolating gross primary productivity from leaf to canopy scale in a winter wheat crop[J]. Agricultural and Forest Meteorology, 2008, 148(4): 668-679. DOI: 10.101 6/j.agrformet.2007.11.010.

Last Update: 2017-03-23