我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

簸箕柳SPL基因家族分析(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
55-62
Column:
研究论文
publishdate:
2017-03-23

Article Info:/Info

Title:
Analyzing the SPL gene family in Salix suchowensis
Article ID:
1000-2006(2017)02-0055-08
Author(s):
FENG Kai HOU Jing DAI Xiaogang LI Shuxian*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Salix suchowensis flower development SPL gene family gene duplication
Classification number :
S718; Q811.4
DOI:
10.3969/j.issn.1000-2006.2017.02.009
Document Code:
A
Abstract:
【Objective】This study focused mainly on the differential retention and expansion of the SPL gene family in different species and provided a basis for future study of floral development in angiosperms. 【Method】The SPL gene families of Arabidopsis thaliana, Populus trichocarpa, Salix suchowensis, Vitis vinifera, Carica papaya and Oryza sativa were identified using homology comparison against the SPL domain. BLASTN was used to identify different types of homologous gene pairs. We used in-house Perl scripts combined with KaKs_Calculator to calculate the non-synonymous mutation(Ka)and synonymous mutation(Ks)values of each SPL gene pair. Differential retention and expansion of the SPL gene families of these six angiosperms were determined by synteny analysis. 【Result】 We detected 120 SPL genes in the examined plants. By analyzing the paralogous and orthologous SPL genes among the six species, we found that the species of Salicaceae have a total of 24 paralogous SPLs and 50 orthologous SPLs, which are the most abundant among the six species; papaya had no paralogous SPL. Among these six species, woody plants had the most abundant orthologous SPLs compared with herbaceous plants, and dicotyledons were found to have more orthologous SPLs than monocotyledons. It is noteworthy that all the Ka/Ks values for the paralogous and orthologous SPL gene pairs were less than 1.0. In transcriptome analysis, we detected an SPL gene(willow_GLEAN_10025160)that showed significant different expression in flowering tillers compared to vegetative tillers(P≤ 0.01). 【Conclusion】On the basis of bioinformatic analysis, we found that all the Ka/Ks values for the paralogous and orthologous SPL gene pairs were less than 1.0, indicating that the SPL genes in the six examined species have been undergoing purifying selection during the course of evolution, and that their functions should be relatively conserved. We also found that despite whole-genome duplication events, these angiosperms have undergone large-scale gene loss and gene expansion. Based on the results of sequence collinearity, we explored the intraspecific collinearity of SPL genes and tracked their genome duplication events during the evolutionary history of the six plants. This study provides useful information and clues for further studies of the function of SPL genes in the regulation of plant flowering.

References

[1] 徐妙云, 王磊. MicroRNA与植物花发育调控的研究进展[J]. 中国农业科技导报, 2011, 13(2): 9-16. DOI:10.3969/j.issn.1008-0864.2011.02.02 XU M Y, WANG L. Research progress on microRNAs role in controlling flower development[J]. Journal of Agricultural Science and Technology, 2011, 13(2): 9-16.
[2] PARK M Y, WU G, GONZALEZ-SULSER A, et al. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2005, 102(10): 3691-3696. DOI:10.1073/pnas.0405570102.
[3] FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8): 1033-1037. DOI:10.1038/ng2079.
[4] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19): 4117-4129. DOI:10.1242/dev.063511.
[5] YAMAGUCHI A, ABE M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower[J]. Journal of Plant Research, 2012, 125(6): 693-704. DOI:10.1007/s10265-012-0513-7.
[6] 黄赫, 徐启江. MicroRNA调控被子植物花发育的研究进展[J]. 植物生理学报, 2012, 48(10): 929-940. HUANG H, XU Q J.Progress in research of MicroRNA regulation on angiosperm flower development[J]. Plant Physiology Journal, 2012, 48(10): 929-940.
[7] SPANUDAKIS E, JACKSON S. The role of microRNAs in the control of flowering time[J]. Journal of Experimental Botany, 2014, 65(2):365-380. DOI:10.1093/jxb/ert453.
[8] YAMASAKI K, KIGAWA T, INOUE M,et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SPL-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49-63. DOI:10.1016/j.jmb.2004.01.015.
[9] 代法国, 胡宗利, 陈国平, 等. 植物特有的SPL-box基因家族的研究进展[J]. 生命科学, 2010, 22(2): 155-160. DAI F G, HU Z L, CHEN G P,et al. Progress in the plant specific SBP-box gene family[J]. Chinese Bulletin of Life Sciences, 2010, 22(2): 155-160.
[10] RHOADES M, REINHART B, LIM L,et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4): 513-520. DOI:10.1016/S0092-8674(02)00863-2.
[11] 王沙沙. 小黑杨FT-like基因的克隆、原核表达及植物超表达、RNAi表达载体的构建[D]. 哈尔滨: 东北林业大学, 2011. WANG S S. Cloning, prokaryotic expression and transformation of plant overexpression and RNAi vector of FT-like gene of Populus xiaohei[D]. Harbin: Northeast Forestry University, 2011.
[12] FINN R D, CLEMENTS J, EDDY S R. HMMER web server: interactive sequence similarity searching[J]. Nucleic Acids Research, 2011, 39(8):29-37. DOI:10.1093/nar/gkr367.
[13] UNTE U, SORENSEN A, PESARESI P,et al. SPL8, an SPL-box gene that affects pollen sac development in Arabidopsis[J]. The Plant Cell, 2003, 15(4): 1009-1019. DOI:10.1105/tpc.010678.
[14] ALTSCHUL S, MADDEN L, SCHAFFER A,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Reserch, 1997, 25(17): 3389-3402. DOI:10.1093/nar/25.17.3389.
[15] BLANC G, WOLFE K. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. The Plant Cell, 2004, 16(7): 1667-1678. DOI:10.1105/tpc.021345.
[16] EDGAR R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5):1792-1797. DOI:10.1093/nar/gkh340.
[17] YANG Z, NIELSEN R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models[J]. Molecular Biology and Evolution, 2000, 17(1): 32-43.
[18] KATOH K, KUMA K, MIYATA T,et al. Improvement in the accuracy of multiple sequence alignment program MAFFT[J]. Genome Informatics Series, 2005, 16(1): 22-33.
[19] KATOH K, TOH H. Recent developments in the MAFFT multiple sequence alignment program[J]. Briefings in Bioinformatics, 2008, 9(4): 286-298. DOI:10.1093/bib/bbn013.
[20] TAMURA K, PETERSON D, PETERSON N,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. DOI:10.1093/molbev/msr121.
[21] LEE T, TANG H, WANG X,et al. PGDD: a database of gene and genome duplication in plants[J]. Nucleic Acids Research, 2013, 41(D1): 1152-1158. DOI:10.1093/nar/gks1104.
[22] WANG Y, TANG H, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. DOI:10.1093/nar/gkr1293.
[23] LIU J, YIN T, YE N, et al. Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis)[J]. Plos One, 2013, 8(4): e60181. DOI:10.1371/journal.pone.0060181.
[24] CHEN Y, MAO Y, LIU H, et al. Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers[J]. PloS One, 2014, 9(3): e90842. DOI:10.1371/journal.pone.0090842.
[25] ROMUALDI C, BORTOLUZZI S, D’ALESSI F, et al. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments[J]. Physiological Genomics, 2003, 12(2): 159-162. DOI:10.1152/physiolgenomics.00096.2002
[26] YANG Z, BIELAWSKI J. Statistical methods for detecting molecular adaptation[J]. Trends in Ecology and Evolution, 2000, 15(12): 496-503. DOI:10.1016/S0169-5347(00)01994-7.
[27] BLANC G, HOKAMP K, WOLFE K. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome[J]. Genome Research, 2003, 13(2): 137-144. DOI:10.1101/gr.751803.
[28] TANG H, WANG X, BOWERS J E, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps[J]. Genome Research, 2008, 18(12):1944-1954. DOI:10.1101/gr.080978.108.
[29] TANG H, BOWERS J E, WANG X, et al. Synteny and collinearity in plant genomes[J]. Science, 2008, 320(5875):486-8. DOI:10.1126/science.1153917.
[30] DAI X, HU Q, CAI Q, et al. The willow genome and divergent evolution from poplar after the common genome duplication[J]. Cell Research, 2014, 24(10):1274-1277. DOI:10.1038/cr.2014.83.
[31] INITIATIVE A G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. DOI:10.1038/35048692.
[32] JAILLON O, AURY J M, NOEL B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161):463-467. DOI:10.1038/nature06148.
[33] MING R, HOU S, FENG Y, et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature, 2008, 452(7190):991-996. DOI:10.1038/nature06856.
[34] GUO L, CHEN Y, YE N, et al. Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family[J]. BMC Genomics, 2014, 15(1): 612. DOI:10.1186/1471-2164-15-612.

Last Update: 2017-03-23