我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

增施铁对镉胁迫下柳树生长及光合生理性能的改善(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
63-72
Column:
研究论文
publishdate:
2017-03-23

Article Info:/Info

Title:
Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe
Article ID:
1000-2006(2017)02-0063-10
Author(s):
DAI Qianli1 LI Jinhua1* HU Jianjun1 LU Mengzhu1 GIUSEPPE Nervo2
1. State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
2. Unità di ricerca per le produzioni legnose fuori foresta, CRA-PLF, Casale Monferrato 15033, Italy
Keywords:
willow cadmium treatments iron growth and photosynthesis related indicators
Classification number :
S718.43
DOI:
10.3969/j.issn.1000-2006.2017.02.010
Document Code:
A
Abstract:
【Objective】 This paper investigated the effect of Cd concentrations with/without extra Fe on growth and photosynthetic physiology of different willow clones/cultivar is to explore the role of extra Fe on reducing Cd stress and improving Cd tolerance of willow and to shed more light on the regulation of extra Fe under Cd stress as its results for important practical significance. 【Method】 In greenhouse, cuttings of three willow clones/cultivar, Salix matsudana ‘Levante’, S. viminalis cl. 79026 and S. viminalis cl. 790260, were used for hydroponic culture in half of Hoagland nutrient solution(25 μmol/L EDTA-Na2Fe)with Cd concentrations(0, 10, 50, 100 μmol/L). In another hydroponic group, extra Fe(25μmol/L EDTA-Na2Fe)were supplied in solution with different Cd concentrations mentioned above. Growth(height and diameter), biomass(root, stem and leaf), photosynthesis indicators(chlorophyll a and b content, ration of chlorophyll a to b, net photosynthesis, stomatal conductance and intercellular CO2 concentration), Cd and Fe content of root, stem, leaf were measured for plants of each clone/cultivar after 42 d culture. 【Result】 ① With the increasing of Cd concentrations in solution, growth, biomass, chlorophyll a and b content, net photosynthetic rate, stomatal conductance and Fe content of stem and leaf decreased, however, ratio of chlorophyll a to b, intercellular CO2 concentration, Cd content of root, stem, leaf increased. Meanwhile, Fe content of root in three clones/cultivar decreased under low and middle Cd concentration(10, 50 μmol/L)and decreased under high Cd concentration(100 μmol/L). Under the same Cd concentration, Cd and Fe content of three clones/cultivar were root> leaf> stem. Cd content of root in S. matsudana was more than that of S. viminalis, while Cd content of leaf in S. viminalis were more than that of S. matsudana. ② In comparison with that under the low Cd concentration with extra Fe, chlorophyll a and b content of three clones/cultivar, growth and biomass of S. matsudana‘Levante‘ and S. viminalis cl. 79026 except that stem biomass of S. matsudana ‘Levante’, ratio of chlorophyll a to b, net photosynthetic rate of S. matsudana ‘Levante’ were significantly decreased, while Cd and Fe content of three clones/cultivar were increased and decreased under the middle and high Cd concentration with extra Fe. Under the high Cd concentrations with extra Fe, Cd content of leaf in S. matsudana ‘Levante’ and S. viminalis cl. 790260 were less than that under low and middle Cd concentration with extra Fe. And Cd content of root, stem, leaf and Fe content of leaf in S. matsudana were less than these of S. viminalis. ③ Compared with that in the culture without extra Fe, extra Fe in the culture improved growth, biomass, chlorophyll a and b content, stomatal conductance and intercellular CO2 concentration of willow under Cd stress, especially decreased Cd content of root and leaf and increased Cd content of stem under the high Cd concentrations with extra Fe. In addition, Cd content of root, stem and leaf in S. matsudana’ were less than these in S. viminalis. 【Conclusion】Cd stress inhibited growth, dry biomass accumulation, chlorophyll synthesis and photosynthesis of willow. At middle and high Cd concentrations, inhibition on growth and dry biomass accumulation of S. matsudana was greater than that of S. viminalis. Cd and Fe accumulation capacity of root was greater than that of stem and leaf in willow, while Cd accumulation capacity of S. viminalis was greater than that of S. matsudana. Extra Fe with Cd stress increased growth, biomass, chlorophyll content, Cd and Fe content of willow. As the result, extra Fe alleviated Cd stress on chlorophyll synthesis, photosynthesis, etc. of willow while effect on S. matsudana was greater than that on S. viminalis. The results showed that extra Fe supplying could improve growth and physiological adaptation of willows under Cd stress.

References

[1] BENAVIDES M P, GALLEGO S M, TOMARO M L. Cadmium toxicity in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1): 21-34. DOI: 10.1590/S1677-04202005000100003.
[2] GREGER M, LANDBERG T. Use of willow in phytoextraction[J]. International Journal of Phytoremediation, 1999, 1(2): 115-123. DOI: 10.1080/15226519908500010.
[3] DICKINSON N M, PULFORD I D. Cadmium phytoextraetion using short rotation coppice Salix: the evidence trail[J]. Environment international, 2005, 31(4): 609-613. DOI: 10.1016/j.envint.2004.10.013.
[4] BERNDES G, FREDRIKSON F, BORJESSON P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden[J]. Agriculture, Ecosystems & Environment, 2004, 103(1): 207-223. DOI: 10.1016/j.agee.2003.09.013.
[5] MEERS E, VANDECASTEELE B, RUTTENS A, et al. Potential of five willow species(Salix spp.)for phytoextraction of heavy metals[J]. Environmental and Experimental Botany, 2007, 60(1): 57-68. DOI: 10.1016/j.envexpbot.2006.06.008.
[6] DOS SANTOS UTMAZIAN M N, WIESHAMMER G, VEGA R, et al. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars[J]. Environmental Pollution, 2007, 148(1): 155-165. DOI: 10.1016/j.envpol.2006.10.045.
[7] KLANG-WESTIN E, ERIKSSON J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils[J]. Plant and Soil, 2003, 249(1): 127-137. DOI: 10.1023/A:1022585404481.
[8] JACCONETTE M, ISEBRANDS J G, THEO V, et al. Development of short-rotation willow coppice systems for environmental purposes in Sweden[J]. Biomass & Bioenergy, 2005, 28(2): 219-228. DOI: 10.1016/j.biombioe.2004.08.012.
[9] VASSILEV A, PEREZ-SANZ A, SEMANE B, et al. Cadmium accumulation and tolerance of two Salix genotypes hydroponically grown in presence of cadmium[J]. Journal of Plant Nutrition, 2005, 28(12): 2159-2177. DOI: 10.1080/01904160500320806.
[10] WATSON C, PULFORD I D, RIDDELL-BLACK D. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials[J]. International Journal of Phytoremediation, 2003, 5(4): 351-365. DOI: 10.1080/15226510309359042.
[11] LANDBERG T, GREGER M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas[J]. Applied Geochemistry, 1996, 11(s 1-2): 175-180. DOI:10.1016/0883-2927(95)00082-8.
[12] VYSLOUZILOVA M, TLUSTOS P, SZAKOVA J. Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils[J]. Plant Soil Environment, 2003, 49(12): 542-547.
[13] ZACCHINI M, PIETRINI F, SCARASCIA-MUGNOZZA G, et al. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics[J]. Water Air & Soil Pollution, 2009, 197(1-4): 23-34. DOI:10.1007/s11270-008-9788-7.
[14] IORI V, PIETRINI F, MASSACCI A, et al. Morphophysiological responses, heavy metal accumulation and phytoremoval ability in four willow clones exposed to cadmium under hydroponics[J]. Phytoremediation, 2014,(1): 87-98. DOI: 10.1007/978-3-319-10395-2_7.
[15] KUZOVKINA Y A, KNEE M, QUIGLEY M F. Cadmium and copper uptake and translocation in five willow(Salix L.)Species[J]. International Journal of Phytoremediation, 2004, 6(3): 268-287. DOI: 10.1080/16226510490496726.
[16] 杨卫东,陈益泰.不同杞柳品种对镉(Cd)吸收与忍耐的差异[J].林业科学研究,2008,21(6):857—861. DOI:10.3321/j.issn:1001-1498.2008.06.022. YANG W D, CHEN Y T. Differences in uptake and tolerance to Cadmium in varieties of Salix integra[J]. Forest Research, 2008, 21(6): 857-861.
[17] 杨卫东,陈益泰.垂柳对镉吸收、积累与耐性的特点分析[J].南京林业大学学报(自然科学版),2009,33(5):17-20. DOI:10.3969/j.jssn.1000-2006.2009.05.004. YANG W D, CHEN Y T. Studies on cadmium uptake, accumulation and tolerance in Salix babylonica[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 33(5): 17-20.
[18] 贾中民,王力,魏虹,等.垂柳和旱柳对镉的积累及生长光合响应比较分析水[J].林业科学,2013,49(11):51-59. DOI:10.11707/j.1001-7488.20131107. JIA Z M, WANG L, WEI H, et al. Comparative analysis of Salix lonica and Salix matsudana for their cadmium accumulation, growth and photosynthesis in response to cadmium contamination[J]. Scientia Silvae Sinicae, 2013, 49(11): 51-59.
[19] LOMBI E, ZHAO F J, DUNHAM S J, et al. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense[J]. New Phytologist, 2000, 145(1): 11-20. DOI: 10.1046/j.1469-8137.2000.00560.x
[20] FELIX H. Field trials for in situ decontamination of heavy metals polluted soils using crops of metal-accumulating plants[J]. Zeitschrift für Pflanzenernährung und Bodenkunde, 1997, 160(4): 525-529. DOI: 10.1002/jpln.19971600414.
[21] MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319-34. DOI: 10.1093/treephys/tpr090.
[22] PIETRINI F, ZACCHINI M, IORI V, et al. Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses[J]. International Journal of Phytoremediation, 2010, 12: 105-120. DOI: 10.1080/15226510902767163.
[23] MIHUCZ V G, CSOG Á, FODOR F, et al. Impact of two iron(III)chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics[J]. Journal of Plant Physiology, 2012, 169(6): 561-566. DOI: 10.1016/j.jplph.2011.12.012.
[24] SOLTI Á, GÁSPÁR L, MÉSZÁROS I, et al. Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar(Populus glauca)[J]. Annals of Botany, 2008, 102(5): 771-782. DOI: 10.1093/aob/mcn160.
[25] FODOR F, GÁSPÁR L, MORALES F, et al. Effects of two iron sources on iron and cadmium allocation in poplar(Populus alba)plants exposed to cadmium[J]. Tree Physiology, 2005, 25(9): 1173-1180. DOI: 10.1093/treephys/25.9.1173.
[26] 张帆,万雪琴,王长亮,等.镉胁迫下增施氮对杨树生长和光合特性的影响[J].四川农业大学学报,2011,29(3):317-321. DOI: 10.3969/j.issn.1000-2650.2011.03.005. ZHANG F, WAN X Q, WANG C L, et al. Effects of nitrogen supplement on photosynthetic characteristic and growth rate of poplar plants under cadmium stress[J]. Journal of Sichuan Agricultural University, 2011, 29(3): 317-321.
[27] SHAO G S, CHEN M X, WANG W X, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33-42. DOI:10.1007/s10725-007-9201-3.
[28] SOLTI Á. Cd-Fe interference in iron homeostasis and in photosynthesis [D]. Budapest: Eötvös University, 2012.
[29] SOLTI Á, SÁRVÁRI É, TÓTHB B, et al. Cd affects the translocation of some metals either Fe-like or Ca-like way in poplar[J]. Plant Physiology and Biochemistry, 2011, 49(5): 494-498. DOI: 10.1016/j.plaphy.2011.01.011
[30] SÁRVÁRI É, SOLTI Á, BASA B, et al. Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar(Populus jacquemontiana var. glauca cv. Kopeczkii)[J]. Plant Physiology and Biochemistry, 2011, 49(5): 499-505. DOI: 10.1016/j.plaphy.2011.02.012.
[31] SIEDLECKA A, KRUPA Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris[J]. Plant Physiology and Biochemistry, 1996, 34(6): 833-841.
[32] BASZYNSKI T. Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants[J]. Acta Societatis Botanicorum Poloniae, 1986, 55: 291-301. DOI: 10.5586/asbp.1986.029.
[33] 邵国胜,陈铭学,王丹英,等.稻米镉积累的铁肥调控[J].中国科学:C辑生命科学,2008,38(2):180-187. SHAO G S, CHEN M X, WANG D Y, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Science in China: Series C Life Sciences, 2008, 38(2): 180-182.
[34] 张宪政.作物生理研究法[M].北京:农业出版社.1992.
[35] 万雪琴,张帆,夏新莉,等.镉胁迫对杨树矿质营养吸收和分配的影响[J].林业科学,2009,45(7):45-51. DOI: 10.11707/j.1001-7488.20090708 WAN X Q, ZHANG F, XIA X L, et al. Efects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants[J]. Scientia Silvae Sinicae, 2009, 45(7): 45-51.
[36] 汪有良,王保松,施士争.乔木型柳树杂种无性系对镉的吸收和积累特性[J].南京林业大学学报(自然科学版),2011,35(2):135-138. DOI: 10.3969/j.jssn.1000-2006.2011.02.029. WANG Y L, WANG B S, SHI S Z. Research on cadmium absorption characters of arbor willows[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(2):135-138.
[37] 汪有良,王保松,施士争.灌木型柳树镉吸收积累性状的研究[J].西北林学院学报,2011,26(2):105-10. WANG Y L, WANG B S, SHI S Z. Cadmium absorption characters of bush willow[J]. Journal of Northwest Forestry University, 2011, 26(2):105-110.
[38] 黄益宗,朱永官,黄凤堂,等.镉和铁及其交互作用对植物生长的影响[J].生态环境,2004,13(3):406-409.DOI:10.3969/j.issn.1674-5906.2004.03.030. HUANG Y Z, ZHU Y G, HUANG F T, et al. Effects of cadmium and iron and their interactions on plants growth: a review[J]. Ecology and Environment, 2004, 13(3): 406-409.
[39] 郭春爱,刘芳,许晓明.叶绿素b缺失与植物的光合作用[J].植物生理学通讯,2006,42(5):967-973. GUO C A, LIU F, XU X M. Chlorophyll-b Deficient and Photosynthesis in Plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973.
[40] 李德全,高辉远,孟庆伟.植物生理学[M].北京:中国农业科学技术出版社,2004.
[41] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345. DOI: 10.1146/annurev.pp.33.060182.001533.
[42] 蔺晓辉,段爱国,何彩云,等.镉胁迫对107杨幼苗光合作用和干物质分配的影响[J].林业科学研究,2012,25(5):651-656.DOI:10.3969/j.issn.1001-1498.2012.05.018. LIN X H, DUAN A G, HE C Y, et al. Effects of cadmium stress on leaf photosynthesis and dry matter allocation of Populus×euramericana(Dode)Guineir cv. ‘Neva’[J]. Forest Research, 2012, 25(5): 651-656.
[43] 黄益宗,朱永官,童依平,等.土壤水分变化对玉米苗期吸收积累镉的影响[J].生态学报,2004,24(12):499-505. DOI: 10.3321/j.issn:1000-0933.2004.12.024. HUANG Y Z, ZHU Y G, TONG Y P, et al. Absorption and accumulation of Cd in corn: effects by soil water contents[J]. Acta Ecologica Sinica, 2004, 24(12): 499-505.
[44] 张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8. DOI: 10.3321/j.issn:1671-3877.2006.01.001. ZHANG J, SHU W S. Mechanisms of heavy metal cadmium tolerance in plants[J]. Journal of Plant Physiology and Molecular Biology, 2006,32(1): 1-8.
[45] 杨卫东.柳树对镉积累、忍耐与解毒生理机制初步研究[D].北京:中国林业科学研究院,2008. YANG W D. Preliminary studies on cadmium accumulation, tolerance and detoxification in willows[D]. Beijing: Chinese Academy of Forestry, 2008.
[46] 韦秀文,姚斌,刘慧文,等.重金属及有机物污染土壤的树木修复研究进展[J].林业科学,2011,47(5):124-130. DOI: 10.11707/j.1001-7488.20110520. WEI X W, YAO B, LIU H W, et al. Application of dendroremediation to the soil contaminated soil by heavy metals and organic pollutants[J]. Scientia Silvae Sinicae, 2011, 47(5): 124-130.

Last Update: 2017-03-23