我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

混凝土自锚式悬索桥超宽加劲梁施工过程受力分析(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
143-149
Column:
研究论文
publishdate:
2017-03-23

Article Info:/Info

Title:
Mechanical analysis on construction process of extra wide stiffening girder of self-anchored concrete suspension bridge
Article ID:
1000-2006(2017)02-0143-07
Author(s):
SUO Xiaocan1 DUAN Maojun1 LI Guofen1* ZHOU Guangpan2
1.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
2. School of Civil Engineering, Southeast University, Nanjing 210096, China
Keywords:
concrete self-anchored suspension bridge extra wide stiffening beam beam grid method stress analysis
Classification number :
U441.5
DOI:
10.3969/j.issn.1000-2006.2017.02.021
Document Code:
A
Abstract:
【Objective】Studying the stress distribution of an extra-wide stiffening girder of a concrete self-anchored suspension bridge, during the construction process, could provide theoretical reference for its design and construction.【Method】The shear flexible beam grid method was used to establish a finite element beam grid model in space with a Midas/Civil system. Further, the performance of stiffening girder under loading was analyzed.【Result】 The transverse stress distribution in the top and bottom plates of the stiffening girder demonstrated an obvious non-uniformity. In the process of pre-stressing, the stress on the outer webs of the girder was larger than that on the inner webs. In the process of system conversion, the stress increment on inner webs was larger. It was during the process of system conversion that the stress variations in the top and bottom plates of the stiffening girder were different. The maximum compressive stress in the bottom plate was recorded in the hanger tensioning process. Therefore, in the top plate, the compressive stress reaches a maximum after system conversion, while in the bottom plate, the compressive stress reaches a maximum during the process of system conversion. As a passive tensioning process of the hangers, the application of second-phase constant load could significantly reduce the stress difference between the top and bottom plates caused by the initial hanger tension.【Conclusion】The main reason for the non-uniformity in the transverse stress distribution was investigated to be the axial force in the main cable and the action of pre-stressed tendons. The stress distribution in the stiffening girder could be made uniform by adjusting the number and position of pre-stressed tendons.

References

[1] 李建慧,李爱群. 空间缆索自锚式悬索桥计算、监控与评估 [M]. 北京:人民交通出版社,2011.
[2] 高丕勤,王小松. 顶板横向预应力作用下宽箱梁空间效应分析 [J]. 重庆交通大学学报(自然科学版),2012,31(1):668-671. DOI: 10.3969/j. issn. 1674-0696. 2012. Sup. 1. 32. GAO P Q, WANG X S. Spatial effect analysis of broad box girder under transverse pre-stressing forces [J]. Journal of Chongqing Jiaotong University(Natural Science), 2012, 31(1): 668-671.
[3] 张元海,白昕,林丽霞. 箱形梁剪力滞效应的改进分析方法研究 [J]. 土木工程学报,2012,45(11):153-158. ZHANG Y H, BAI X, LIN L X. An improved approach for analyzing shear lag effect of box girders [J]. China Civil Engineering Journal, 2012, 45(11): 153-158.
[4] 彭德运,丁敬,李正. 成市高架桥连续宽箱梁空间效应研究[J]. 公路,2012(8):134-138. PENG D Y, DING J, LI Z. Research on space wide effect of the city viaduct continuous box girder [J]. Highway, 2012(8): 134-138.
[5] 宁立,郭文华. 梯形多室宽箱梁上部结构设计研究[J].公路,2012(1):74-77. NING L, GUO W H. Research on trapezoidal multicellular wide box girder upper structure design [J]. Highway, 2012(1): 74-77.
[6] 徐华,余泽,唐盛华,等. 超宽分离式混凝土边箱梁剪力滞效应研究[J]. 中外公路,2012,32(4):93-98. DOI: 10.14048/j. issn.1671-2579. 2012.04.018. XU H, YU Z, TANG S H, et al. Research on shear lag effect of ultra wide separate concrete box girder [J]. Journal of China & Foreign Highway, 2012, 32(4): 93-98.
[7] 谭冬莲. 大跨径自锚式悬索桥合理成桥状态的确定方法[J]. 中国公路学报,2005,18(2):52-54. TAN D L. Decision method on reasonable design state of self-anchored suspension bridge [J]. China Journal of Highway and Transport, 2005, 18(2): 52-54.
[8] 马勇毅,张威振. 剪力-柔性:梁格法在Midas中的具体应用[J]. 中外公路,2007,27(5):173-175. MA Y Y, ZHANG W Z. The application of shear-flexible girder method in Midas [J]. Journal of China & Foreign Highway, 2007, 27(5): 173-175.
[9] 戴公连,李德建. 桥梁结构空间设计方法与应用[M].北京:人民交通出版社,2001..
[10] 聂建国,朱力,樊健生,等. 钢-混凝土组合箱梁桥杆系模型的理论与计算[J]. 中国公路学报,2014,27(7):32-35. NIE J G, ZHU L, FAN J S, et al. Theory and calculation of beam-truss model of steel-concrete composite box-girder bridge [J]. China Journal of Highway and Transport, 2014, 27(7): 32-35.
[11] 邱文亮,姜萌,张哲. 混凝土自锚式悬索桥极限承载力影响因素[J]. 哈尔滨工业大学学报,2009,141(8):128-131. QIU W L, JIANG M, ZHANG Z. Influencing factors of ultimate load carrying capacity of self-anchored concrete suspension bridge [J]. Journal of Harbin Institute of Technology, 2009, 141(8): 128-131.
[12] 王桢,吴海军,周志祥,等. 大跨径自锚式悬索桥主缆位移特性分析[J]. 土木工程学报,2015,48(7):102-111. WANG Z, WU H J, ZHOU Z X, et al. Displacement characteristics analysis on the main cable of large-span self-anchored suspension bridge [J]. China Civil Engineering Journal, 2015, 48(7): 102-111.
[13] 张俊平,黄海云,刘爱荣,等. 空间缆索自锚式悬索桥体系转换过程中受力行为的全桥模型试验研究[J]. 土木工程学报,2011,44(2):108-114. ZHANG J P, HUANG H Y, LIU A R, et al. An overall bridge model test study on the mechanical behaviors in the process of system transformation of self-anchored suspension bridge with spatial cable system [J]. China Civil Engineering Journal, 2011, 44(2): 108-114.
[14] 柯红军. 广州猎德大桥体系转换施工方法的确定及实施[J]. 桥梁建设,2010(2):80-83. KE H J. Determination and implementation of construction method for system transformation of Liede Bridge in Guangzhou [J]. Bridge Construction, 2010(2): 80-83.
[15] 王邵锐,周志祥,吴海军. 超大跨径自锚式悬索桥施工过程中力学性能的试验研究[J]. 土木工程学报,2014,47(6):71-76. WANG S R, ZHOU Z X, WU H J. Experimental study on the mechanical performance of super long-span self-anchored suspension bridge in construction process [J]. China Civil Engineering Journal, 2014, 47(6): 71-76.

Last Update: 2017-03-23