我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

低温环境下木材细胞中冰晶的形成和传播研究综述(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
169-174
Column:
综合评述
publishdate:
2017-03-23

Article Info:/Info

Title:
A review on ice formation and propagation in wood cells at subzero temperatures
Article ID:
1000-2006(2017)02-0169-06
Author(s):
XU Huadong1 WANG Yuting1 WANG Lihai1 WANG Xiping2
1. College of Engineering and Technology, Northeast Forestry University, Harbin 150040,China;
2. USDA Forest Service, Forest Products Laboratory, Madison, WI 53705, USA
Keywords:
subzero temperature standing trees ice formation wood cell nondestructive test
Classification number :
S781.3; S718.4
DOI:
10.3969/j.issn.1000-2006.2017.02.025
Document Code:
A
Abstract:
The state of the internal water in tree xylem is important in tree physiology and has a crucial effect on the quality of standing trees. However, there are several difficulties involved in the accurate and nondestructive evaluation of internal water using acoustic techniques, especially in winter. We reviewed the recent research about ice formation, propagation, distribution and crystal content, which reported both macroscopic tree stem and microscopic wood cell results. The freezing patterns and behavior of intracellular or extracellular water in woody tissue were also discussed. Several methods, including time domain reflectometry, cryo-scanning electron microscopy, differential thermal analysis and nuclear magnetic resonance, were used to study the freezing process of the internal water in wood, and their advantages were compared. Consider that further research is required to develop the technical methods, research objects and depth of analysis. In future, more in-situ detection should be performed on living standing tree trunks and branches using a variety of means to systematically study ice formation and expansion processes. A future aim would be to obtain a clear understanding of the mechanism of ice formation and propagation in wood at subzero temperatures.

References

[1] 徐华东, 王立海.温度和含水率对红松木材中应力波传播速度的影响[J]. 林业科学, 2011, 47(9): 123-128. XU H D, WANG L H. Effects of moisture content and temperature on propagation velocity of stress waves in Korean pine wood [J]. Scientia Silvae Sinicae, 2011, 47(9): 123-128.
[2] 高珊, 王立海, 王洋, 等.应力波在立木冻结与常温状态下的传播速度比较[J]. 林业科学, 2010, 46(10): 124-129. GAO S, WANG L H, WANG Y, et al. Comparisons of stress wave propagating velocities in frozen state and in normal temperature state of standing trees[J]. Scientia Silvae Sinicae, 2010, 46(10):124-129.
[3] GAO S, WANG X P, WANG L H, et al. Effect of temperature on acoustic evaluation of standing trees and logs:Part 1. laboratory investigation[J]. Wood Fiber Sci, 2012, 44: 286-297.
[4] GAO S, WANG X P, WANG L H, et al. Effect of temperature on acoustic evaluation of standing trees and logs: Part 2. field investigation[J]. Wood Fiber Sci, 2013, 45: 15-25.
[5] XU H D, WANG L H. Analysis of cold temperature effect on stress wave velocity in green wood[J]. Holzforschung, 2014, 68(6): 693-698.
[6] 江京辉, 赵丽媛, 吕建雄.低温对木材性质影响研究进展[J].世界林业研究, 2014, 27(2): 35-38. DOI:10.13348/j.cnki.sjlyyj.2014.02.007 JIANG J H, ZHAO L Y, LV J X. Research progress on properties of wood at low temperature[J].World Forestry Research, 2014, 27(2): 35-38.
[7] 徐华东,徐国祺,王立海.低温对红松和大青杨木材力学性质的影响[J].南京林业大学学报(自然科学版), 2014, 38(5): 25-28. DOI:10.3969/j.issn.1000-2006.2014.05.006. XU H D, XU G Q, WANG L H. Effect of low temperature on the mechanical properties of Pinus koraiensis and Populus ussuriensis timber[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(5): 25-28.
[8] BURKE M J, GUSTO L V, QUAMME H A, et al. Freezing and injury in plants[J]. Ann Rev Plant Physiol, 1976, 27: 507-528.
[9] ASHWORTH E N, ECHLIN P, PEARCE R S, et al. Ice formation and tissue response in apple twigs[J]. Plant Cell Environ, 1988, 11: 703-710. DOI:10.1111/j.1365-3040.1988.tb01153.x.
[10] MALONE S R, ASHWORTH E N. Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques[J]. Plant Physiol, 1991, 95:871-881.
[11] RAISANEN M, REPO T, RIKALA R, et al. Does ice crystal formation in buds explain growth disturbances in boron-deficient Norway spruce?[J]. Trees-struct Funct, 2006,20(4): 441-448.
[12] 杨戈尔, 张爱丽, 徐学敏, 等.胞内冰晶形成(综述)[J]. 工程热物理学报, 2007,28(S2): 55-57. DOI:10.3321/j.issn:0253-231X.2007.z2.015 YANG G E, ZHANG A L, XU X M, et al. Intracellular ice formation(review)[J]. Journal of Engineering Thermophysics, 2007, 28(S2): 55-57.
[13] TOPP G C, DAVIS J L, ANNAN A P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resour Res, 1980, 16:574-582. DOI:10.1029/wr016i003p00574.
[14] WULLSCHLEGER S, HANSON P J, TODD D E. Measuring stem water content in four deciduous hardwoods with a time-domain reflectometer[J]. Tree Physiol, 1996, 16: 809-815.DOI:10.1093/treephys/16.10.809.
[15] SPARKS J P, CAMPBELL G S, BLACK R A. Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study[J]. Oecologia, 2001, 127: 468-475. DOI:10.1007/s004420000587.
[16] HIRSH A, BENT T, ERBE E. Localization and characterization of intracellular liquid-liquid phase separations in deeply frozen populus using electron microscopy, dynamic mechanical analysis and differential scanning calorimetry[J]. Thermochim Acta, 1989, 155:163-186. DOI:10.1016/0040-6031(89)87144-8.
[17] ASHWORTH E N. Responses of bark and wood cells to freezing advances in low temperature[J]. Biology, 1996(3): 65-106. DOI:10.1016/s1873-9792(96)80004-5.
[18] NAKAMURA K, HATAKEYAMA T, HATAKEYAMA H. Studies on bound water of cellulose by differential scanning calorimetry[J]. Text Res J, 1981, 51(9): 607-613. DOI:10.1177/004051758105100909.
[19] 徐华东, 王立海. 冻结红松和大青杨湿木材内部水分存在状态及含量测定[J]. 林业科学, 2012, 48(2): 139-143. XU H D, WANG L H. Determining the states of water and its fraction in frozen Populus ussuriensis and Pinus koraiensis green timbers [J]. Scientia Silvae Sinicae, 2012, 48(2): 139-143.
[20] HACKER J, NEUNER G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis(IDTA)[J]. Tree Physiol, 2007, 27: 1661-1670. DOI:10.1093/treephys/27.12.1661.
[21] PEARCE R S. Plant freezing and damage[J]. Ann Bot, 2001, 87: 417-424. DOI:10.1006/anbo.2000.1352.
[22] ISHIKAWA M, PRICE W S, IDE H, et al. Visualization of freezing behaviors in leaf and flower buds of full-moon maple by nuclear magnetic resonance microscopy[J]. Plant Physiol, 1997, 115: 1515-1524. DOI:10.1104/pp.115.4.1515.
[23] FRANKS F. Biophysics and biochemistry at low temperatures[M]. Cambridge: Cambridge University Press, 1985.
[24] NEUNER G, XU B C, HACKER J. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA [J]. Tree Physiol, 2010, 30: 1037-1045. DOI:10.1093/treephys/tpq059.
[25]SAKAI A, LARCHER W. Frost survival of plants: responses and adaptation to freezing stress[J]. Ecological Studies, 1987, 62: 321.
[26] PEARCE R S. Extracellular ice and cell shape in frost-stressed cereal leaves: a low temperature scanning-electron-microscopy study[J]. Planta, 1988, 175: 313-324. DOI:10.1007/bf00396336.
[27] FUJIKAWA S, KURODA K. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species[J]. Micron, 2000, 31: 669-686. DOI:10.1016/s0968-4328(99)00103-1.
[28] KURODA K, KASUGA J, ARAKAWA K, et al. Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation[J]. Plant Physiol, 2003, 131: 736-744. DOI:10.1104/pp.011601.
[29] KASUGA J, ARAKAWA K, FUJIKAWA S. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells[J]. New Phytologist, 2007,174(3): 569-579. DOI:10.1111/j.1469-8137.2007.02025.x.
[30] WEISE U, MALONEY T, PAULAPURO H. Quantification of interaction of water in different states with wood pulp fibers[J]. Cellulose, 1996(3): 189-202. DOI:10.1007/bf02228801.
[31] KÄRENLAMPI P P, TYNJÄÄ P, STRÖM P. Phase transformations of wood cell wall water[J]. J Wood Sci, 2005, 51: 118-123. DOI:10.1007/s10086-004-0630-6.
[32] 赵丽媛, 江京辉,郭飞,等. 低温作用对马尾松热处理材力学性能的影响[J].木材加工机械, 2016, 27(1): 19-21. DOI:10.13594/j.cnki.mcjgjx.2016.01.006. ZHAO L Y, JIANG J H, GUO F, et al. Effect of cryogenic processing on mechanical properties of heat-treated masson pine[J]. Wood Processing Machinery, 2016, 27(1): 19-21.
[33] CHUDINOV B S, STEPANOV V I. Phase mixture of water in frozen wood[J]. Holztechnologie, 1968, 9(1):14-18.
[34] GREEN D W, EVANS J W, LOGAN J D, et al. Adjusting modulus of elasticity of lumber for changes in temperature[J]. Forest Prod J, 1999, 49(10): 82-94.
[35] 乌凤章,王贺新,徐国辉,等.木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学, 2015, 51(71): 116-128. DOI: 10.11707 /j.1001-7488.20150713. WU F Z, WANG H X, XU G H, et al. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J]. Scientia Silvae Sinicae, 2015, 51(71): 116-128.
[36] CHARRA-VASKOU K, BADEL E, CHARRIER G, et al. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles[J].Journal of Experimental Botany, 2016, 67(3): 739-750.DOI: 10.1093/jxb/erv486.
[37] LINTUNEN A, PALJAKKA T, RIIKONEN A, et al. Irreversible diameter change of wood segments correlates with other methods for estimating frost tolerance of living cells in freeze-thaw experiment: a case study with seven urban tree species in Helsinki[J]. Annals of Forest Science, 2015, 72(8):1089-1098. DOI: 10.1007/s13595-015-0516-3.

Last Update: 2017-03-23