我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于GIS几何计算的杉木树干横断面面积模型构建(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年02期
Page:
198-202
Column:
研究简报
publishdate:
2017-03-23

Article Info:/Info

Title:
Retrieving the basal area of Cunninghamia lanceolata based on GIS geometric calculations
Article ID:
1000-2006(2017)02-0198-05
Author(s):
MEI Guangyi CHEN Ling CAO Yuanshuai SUN Yujun* WANG Mingchu
College of Forestry, Beijing Forestry University, Beijing 100083, China
Keywords:
Cunninghamia lanceolata basal area circumference ratio geometric mean diameter GIS
Classification number :
S758
DOI:
10.3969/j.issn.1000-2006.2017.02.030
Document Code:
A
Abstract:
【Objective】Basal area is one of the most important forest structure variables, since it is highly correlated with growth and yield at both tree and stand levels. In this study, four methods that are commonly used to estimate basal area were evaluated and compared to create basal area models, and to determine an optimal estimation method.【Method】Measurements of basal areas, perimeters and diameters at different heights of the stem were collected from Chinese fir trees(Cunninghamia lanceolata)using GIS geometrical calculation functions. Models of basal area and perimeter were then created to retrieve the circumference ratio, which was combined with the optimal statistical method for practical applications. 【Results】The statistical relationship between basal area(G)and perimeter(C)was G = 0.077 666 3C2 with a coefficient of determination(R2)of 0.998 5. The circumference ratio(F)of Chinese fir was 3.218 899 32, which was found to be larger than the circumference ratio of an ideal circle(π=3.141 592 6). The accuracy of the geometric mean diameter was shown to be highest among the four methods. The statistical relationship between basal area and the geometric mean diameter(d)was fitted as G = 0.817 7 d1.990 2(R2= 0.990 5). Basal areas calculated using F were larger than those calculated using π. The bias of the former method was positive, and that of the latter method was negative. Using the mean of F and π as the circumference ratio, we achieved the highest accuracy and stability of basal area predictions.【Conclusion】We concluded that estimating basal area with a combination of geometric mean diameter and the mean value of F and π is preferable for practical forestry applications.

References

[1] 杜纪山,唐守正. 林分断面积生长模型研究评述[J]. 林业科学研究, 1997,10(6): 40-47. DU J S, TANG S Z. The analysis of study process on stand basal area growth model [J].Forestry Research, 1997,10(6): 40-47.
[2] 雷相东,李永慈,向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学,2009,45(1):74-80. LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae,2009,45(1):74-80. DOI:10.3321/j.issn:1001-7488. 2009.01.014.
[3] 汤孟平,周国模,施拥军,等. 不同地形条件下群落物种多样性与胸高断面积的差异分析[J]. 林业科学,2007,43(6):27-31. TANG M P, ZHOU G M, SHI Y J, et al. Difference analysis of community biodiversity and basal area under different terrain[J]. Scientia Silvae Sinicae,2007,43(6):27-31. DOI:10.3321/j.issn:1001-7488. 2007.06.005.
[4] 孙洪刚,张建国,段爱国,等. 杉木密度间伐试验林林分断面积生长效应[J].林业科学研究,2010,46(1):6-12. SUN H G, ZHANG J G, DUAN A G, et al. Long-term effects of thinning on stand basal area increment of Cunninghamia lanceolata[J].Forestry Research, 2010,46(1):6-12.
[5] 孟宪宇.测树学[M].北京:中国林业出版社,2006. MENG X Y. Forest Measuration[M].Beijing: China Forestry Publishing House,2006.
[6] 梅光义,孙玉军.国内外削度方程研究进展[J].世界林业研究,2015,28(4):44-49. MEI G Y, SUN Y J. Research progress in stem taper equation[J]. World Forestry Research,2015,28(4):44-49. DOI:10.13348/j.cnki.sjlyyj.2015.04.006.
[7] MEI G Y, SUN Y J, XU H, et al. A mixed-effects model with different strategies for modeling volume in Cunninghamia lanceolata plantations[J].Plos One, 2015,10(10):e0140095. DOI:10.1371/journal.pone.0140095.
[8] RODRÍGUEZ F, BLANCO R, ÁLVARO AUNÓS. Diameter versus girth: which variable provides the best estimate of the cross-sectional area?[J]. Forest Systems, 2015, 24(3):1-9. DOI:10.5424/fs/2015243-05945.
[9] DEAN T J. Basal area increment and growth efficiency as functions of canopy dynamics andstem mechanics[J]. Forest Science, 2004, 50(1): 106-116.
[10] CASTEDO-DORADO F, DIÉGUEZ-ARANDA U, ÁLVAREZ-GONZÁLEZ J G. A growth model for Pinus radiata D. Don stands in north-western Spain[J]. Annals of Forest Science, 2007, 64(4):453-465. DOI:10.1051/ forest:2007023.
[11] 李春明,唐守正. 基于非线性混合模型的落叶松云冷杉林分断面积模型[J]. 林业科学,2010,46(7):106-113. LI C M, TANG S Z.The basal area model of mixed stands of larix olgensis,abies nephrolepis and picea jezoensis based on nonlinear mixed model[J]. Scientia Silvae Sinicae,2010,46(7):106-113.
[12] SAINT-ANDRÉ L, LEBAN J M. An elliptical model for tree ring shape in transverse section methodology and case study on Norway Spruce[J]. Holz als Roh-und Werkstoff, 2000, 58(5):368-374. DOI:10.1007/s001070050447.
[13] SABATIA C O, BURKHART H E. On the Use of upper stem diameters to localize a segmented taper equation to new trees[J]. Forest Science, 2015, 61(3): 411-423. DOI:10.5849/forsci.14-039.
[14] ÖZÇELIK, RAMAZAN, CRECENTE-CAMPO F. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus Mountains, Southern Turkey[J]. Forest Science, 2015, 62(1):78-91. DOI:10.5849/ forsci.14-212.
[15] JASKIERNIAK D, BENYON R, KUCZERA G, et al. A new method for measuring stand sapwood area in forests[J]. Ecohydrology, 2015, 8:504-517.
[16] 梁子瑜,孙圆,梁欣廉,等.基于地面激光扫描仪的树干削度方程提取[J].南京林业大学学报(自然科学版),2014,38(5):6-10. LIANG Z Y,SUN Y,LIANG X L, et al. The extraction of stem taper equation based on terrestrial laser scanning[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014,38(5):6-10.

Last Update: 2017-03-23