我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

伊犁河上游典型草地生态系统氮磷含量及化学计量特征(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年03期
Page:
7-14
Column:
专题报道
publishdate:
2017-05-31

Article Info:/Info

Title:
Stoichiometry of nitrogen and phosphorus and the content in grassland ecosystem in the upper reaches of Ili River
Article ID:
1000-2006(2017)03-0007-08
Author(s):
MA Jie12 LI Lanhai2* LIU Xiang2 BAI Lei2 GAO Liwei3 ZHU Yongli4*
1. Hebei University of Engineering, Handan 056038, China;
2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
3. Chinese Academy of Agricultural Sciences, Beijing 100081, China;
4. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210042, China
Keywords:
grassland ecosystem stoichiometric characteristics soil nitrogen and phosphorus plant nitrogen phosphorus Ili River Valley
Classification number :
S154
DOI:
10.3969/j.issn.1000-2006.201702013
Document Code:
-
Abstract:
【Objective】 To identify the nutrient limitation of typical grassland in the upper reaches of Ili River on the basis of stoichiometry characteristics of nitrogen(N)and phosphorus(P)in grassland ecosystem, which provides theoretical basis for nutrient cycling and plant-soil nutrient management of different grassland communities and scientific basis for the improvement of ecological environment in this area. 【Method】Combined field investigation and laboratory analysis, the ecological stoichiometry of nitrogen and phosphorus contents in plants and soils from the typical grassland ecosystems were obtained. 【Result】 The results showed that the contents of N, P and K with above ground plant and under ground root varied greatly. The N contents of above ground followed an order as: mountain meadow and steppe alpine meadow > desert steppe, semi-desert steppe and alpine meadows; the order of N contents of plant underground roots were semi-desert steppe and desert steppe > mountain meadow steppe, mountain and alpine meadow. Different types of grassland ecosystems in plant above-ground P contents had a significantly negative correlation with the N/P ratio of plant. The soil N and soil P contents, soil P contents and soil N/P ratio had a significantly positive correlation. The soil N content was positively correlated with the soil N/P ratio with a correlation coefficient of 0.983. 【Conclusion】 The soil lacked N in the study area. It is suggested appropriately to add N fertilizer for improving the grassland productivities.

References

[1] 赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价[J]. 生态学报, 2004, 24(6): 1101-1110. DOI:10.3321/j.issn:1000-0933.2004.06.002. ZHAO T Q, OUYANG Z Y, JIA L Q, et al. Ecosystem services and their valuation of China grassland[J]. Acta Ecologica Sinica, 2004, 24(6): 1101-1110.
[2] 高雅, 林慧龙. 草业经济在国民经济中的地位、现状及其发展建议[J]. 草业学报, 2015, 24(1): 141-157. DOI:10.11686/cyxb20150118. GAO Y, LIN H L. The developmental status and potential of grass-based agriculture in the national economy[J]. Acta Prataculturae Sinica, 2015, 24(1): 141-157.
[3] 布尔金, 赵澍, 何峰, 等. 新疆草地畜牧业可持续发展战略研究[J]. 中国农业资源与区划, 2014, 35(3): 120-127. DOI:10.7621/cjarrp.1005-9121.20140319. BUER J, ZHAO S, HE F, et al. Sustainable development strategy study on Xinjiang’s grassland animal husbandry[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(3): 120-127.
[4] 杨孔雀, 郝明德. 我国半干旱地区天然草地退化的原因及恢复技术初探[J]. 陕西农业科学, 2008, 54(5): 131-134. DOI:10.3969/j.issn.0488-5368.2008.05.048.
[5] 徐沙, 龚吉蕊, 张梓榆, 等. 不同利用方式下草地优势植物的生态化学计量特征[J]. 草业学报, 2014, 23(6): 45-53. DOI:10.11686/cyxb20140606. XU S, GONG J R, ZHANG Z Y, et al. The ecological stoichiometry of dominant species in different land uses type of grassland[J]. Acta Prataculturae Sinica, 2014, 23(6): 45-53.
[6] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history and N:P stoichiometry[J]. BioScience, 1996, 46(9): 674-684. DOI:10.2307/1312897.
[7] 贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. DOI:10.3773/j.issn.1005-264x.2010.01.002. HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6.
[8] SISTLA S A, SCHIMEL J P. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytol, 2012, 196(1): 68-78. DOI:10.1111/j.1469-8137.2012.04234.x.
[9] 张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22): 6538-6547. DOI:10.5846/stxb201302270310. ZHANG K, HE M Z, LI X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the alashan desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538-6547.
[10] ELSER J J, ACHARYA K, KYLE M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003, 6(10): 936-943. DOI:10.1046/j.1461-0248.2003.00518.x.
[11] 胡汝骥. 中国天山自然地理[M]. 北京:中国环境科学出版社, 2004:1-443.
[12] 鲍士旦. 面向21世纪课程教材:土壤农化分析[M]. 北京:中国农业出版社, 2000:1-495.
[13] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proc Natl Acad Sci USA, 2004, 101(30): 11001-11006. DOI:10.1073/pnas.0403588101.
[14] HAN W, FANG J, GUO D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytol, 2005, 168(2): 377-385. DOI:10.1111/j.1469-8137.2005.01530.x.
[15] 李玉霖, 孟庆涛, 赵学勇, 等. 科尔沁沙地植物成熟叶片性状与叶凋落物分解的关系[J]. 生态学报, 2008, 28(6): 2486-2494. DOI:10.3321/j.issn:1000-0933.2008.06.007. LI Y L, MENG Q T, ZHAO X Y, et al. Relationships of fresh leaf traits and leaf litter decomposition in Kerqin sandy land[J]. Acta Ecologica Sinica, 2008, 28(6): 2486-2494.
[16] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673. DOI:10.3321/j.issn:0250-3301.2007.12.001. REN S J, YU G R, TAO B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Chinese Journal of Environmental Science, 2007, 28(12): 2665-2673.
[17] 韩文轩, 吴漪, 汤璐瑛, 等. 北京及周边地区植物叶的碳氮磷元素计量特征[J]. 北京大学学报(自然科学版), 2009, 45(5): 855-860. DOI:10.13209/j.0479-8023.2009.127. HAN W X, WU Y, TANG L Y, et al. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(5): 855-860.
[18] 丁小慧, 罗淑政, 刘金巍, 等. 呼伦贝尔草地植物群落与土壤化学计量学征沿经度梯度变化[J]. 生态学报, 2012, 32(11): 3467-3476. DOI:10.5846/stxb201105020571. DING X H, LUO S Z, LIU J W, et al. Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir[J]. Acta Ecologica Sinica, 2012, 32(11): 3467-3476.
[19] 高晟, 王磊, 薛建辉, 等. 贵州喀斯特地区草本植被盖度与土壤养分的相互关系[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 79-83. DOI:10.3969/j.issn.1000-2006.2012.01.016. GAO S, WANG L, XUE J H, et al. The relationship between coverage of herbaceous vegetation communities and soil nutrients in the Karst area of Guizhou Province[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2012, 36(1): 79-83.
[20] 王国兵, 金裕华, 王丰, 等. 武夷山不同海拔植被带土壤微生物量磷的时空变异[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 44-48. DOI:10.3969/j.issn.1000-2006.2011.06.009. WANG G B, JIN Y H, WANG F, et al. Temporal and spatial variations of soil microbial biomass P under different vegetations along an elevation gradients in Wuyi Mountains in southeast of China[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2011, 35(6): 44-48.
[21] GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. DOI:10.1111/j.1469-8137.2004.01192.x.
[22] ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812): 578-580. DOI:10.1038/35046058.
[23] 杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 2011, 20(2): 244-252. DOI:10.11686/cyxb20110230. YANG H M, WANG D M. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors[J]. Acta Prataculturae Sinica, 2011, 20(2): 244-252.
[24] ÅGREN G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39(1): 153-170. DOI:10.1146/annurev.ecolsys.39.110707.173515.
[25] 李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6): 1345-1355. DOI:10.11766/trxb201411220585. LI H L, GONG L, ZHU M L, et al. Stoichiometric characteristics of soil in an oasis on northern edge of Tarim Basin, China[J]. Acta Pedologica Sinica, 2015, 52(6): 1345-1355.
[26] 王维奇, 曾从盛, 钟春棋, 等. 人类干扰对闽江河口湿地土壤碳、氮、磷生态化学计量学特征的影响[J]. 环境科学, 2010, 31(10): 2411-2416. DOI:10.13227/j.hjkx.2010.10.026. WANG W Q, ZENG C S, ZHONG C Q, et al. Effect of human disturbance on ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in Minjiang River estuarine wetland[J]. Chinese Journal of Environmental Science, 2010, 31(10): 2411-2416.
[27] 刘蓉, 张卫国, 江小雷, 等. 垂穗披碱草群落退化演替的植被特性及其与土壤性状的相关性研究[J]. 草业科学, 2010, 27(10): 96-103. LIU R, ZHANG W G, JIANG X L, et al. Study on the characteristics of degradation succession of Elymus nutans community and its correlation to soil properties[J]. Pratacultural Science, 2010, 27(10): 96-103.
[28] 张广帅, 邓浩俊, 杜锟, 等. 泥石流频发区山地不同海拔土壤化学计量特征——以云南省小江流域为例[J]. 生态学报, 2016, 36(3): 675-687. DOI:10.5846/stxb201405060892. ZHANG G S, DENG H J, DU K, et al. Soil stoichiometry characteristics at different elevation gradients of a mountain in an area with high frequency debris flow: a case study in Xiaojiang watershed, Yunnan[J]. Acta Ecologica Sinica, 2016, 36(3): 675-687.
[29] 闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6): 279-292. DOI:10.11686/cyxb20140634. YAN Z Q, QI Y C, DONG Y S, et al. Nitrogen cycling in grassland ecosystems in response to climate change and human activities[J]. Acta Prataculturae Sinica, 2014, 23(6): 279-292.
[30] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析[J]. 草业学报, 2015, 24(3): 38-47. DOI:10.11686/cyxb20150304. QING Y, SUN F D, LI Y, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, Southwest China[J]. Acta Prataculturae Sinica, 2015, 24(3): 38-47.
[31] 秦娟, 唐心红, 杨雪梅. 马尾松不同林型对土壤理化性质的影响[J]. 生态环境学报, 2013, 22(4): 598-604. DOI:10.3969/j.issn.1674-5906.2013.04.009. QIN J, TANG X H, YANG X M. Effects of soil physical and chemical properties on different forest types of Pinus massoniana[J]. Ecology and Environment Sciences, 2013, 22(4): 598-604.
[32] 张婷, 翁月, 姚凤娇, 等. 放牧强度对草甸植物小叶章及土壤化学计量比的影响[J]. 草业学报, 2014, 23(2): 20-28. DOI:10.11686/cyxb20140203. ZHANG T, WENG Y, YAO F J, et al. Effect of grazing intensity on ecological stoichiometry of Deyeuxia angustifolia and meadow soil[J]. Acta Prataculturae Sinica, 2014, 23(2): 20-28.
[33] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252. DOI:10.1007/s10533-007-9132-0.
[34] 吕铭志, 盛连喜, 张立. 中国典型湿地生态系统碳汇功能比较[J]. 湿地科学, 2013, 11(1): 114-120. DOI:10.3969/j.issn.1672-5948.2013.01.017. LU M Z, SHENG L X, ZHANG L. A review on carbon fluxes for typical wetlands in different climates of China[J]. Wetland Science, 2013, 11(1): 114-120.
[35] 李冬林, 韩丽, 阮宏华, 等. 秦淮河河岸带土壤理化性质分析[J]. 南京林业大学学报(自然科学版), 2008, 32(4): 17-22. DOI:10.3969/j.issn.1000-2006.2008.04.004. LI D L, HAN L, RUAN H H, et al. Analysis of soil physical and chemical properties of riparian zone along Qinhuai River[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(4): 17-22.

Last Update: 2017-05-20