我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

茂兰喀斯特原生林细叶青冈树干液流环境响应特征(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年03期
Page:
77-85
Column:
研究论文
publishdate:
2017-05-31

Article Info:/Info

Title:
Characteristics of sap flow of Cyclobalanopsis gracilis in Maolan Karst original forests and its response to environmental factors
Article ID:
1000-2006(2017)03-0077-09
Author(s):
LIU Yanhui DING Fangjun* SHU Deyuan CUI Yingchun HOU Yiju ZHAO Wenjun
Guizhou Academy of Forestry, Guiyang 550005,China
Keywords:
Karst forest Cyclobalanopsis gracilis sap flow velocity environmental factors
Classification number :
S715.4; S718.55+43
DOI:
10.3969/j.issn.1000-2006.20109052
Document Code:
-
Abstract:
【Objective】This research was conducted to probe the stem sap flow characteristics of Cyclobalanopsis gracilis and the relationship between sap flow velocity and environmental factors in a Karst forest.【Methods】 The Thermal Dissipation Probe method and a Campbell Automatic Weather Station were used to conduct long-term continuous observations on the sap flow velocity of C. gracilis along with synchronized environmental factors such as air temperature and rainfall in the Maolan Karst original forest from March 2012 to February 2014. The changing characteristics of sap flow in different weather conditions(sunny days, cloudy days, and rainy days)and on different time scales(dates, months, and seasons), and its response to environmental factors were studied. 【Results】The findings revealed that in the whole observation period, the average daily sap flow velocity of C. gracilis was(5.78 ± 0.19)g/(m2·s), and the average daily sap flow velocity in relation to the different weather conditions was, in descending order, sunny days(10.35 g/(m2·s)), cloudy days(3.28 g/(m2·s)), and rainy days(3.16 g/(m2·s)). The average daily sap flow flux of the C. gracilis sample trees was(3.37±0.11)kg/d, with those on cloudy days and rainy days amounting to only 31.7% and 30.6%, respectively, of that on sunny days, which was 6.03 kg/d. The average daily sap flow velocity in relation to the different seasons was, in descending order,(8.28±0.38)g/(m2·s)in summer,(6.75±0.38)g/(m2·s)in autumn,(6.11±0.34)g/(m2·s)in spring, and(1.91±0.15)g/(m2·s)in winter. The air relative humidity(RH)was negatively correlated with the sap flow velocity. Solar radiation, air vapor pressure deficit(VPD), air temperature(Ta), and soil water content(SWC)were all positively correlated with the sap flow velocity.【Conclusion】The main environmental factors affecting the sap flow velocity were solar radiation, VPD, RH, and Ta. Mild SWC deficiency had no impact on the sap flow velocity. Each environmental factor’s impact on the sap flow velocity varied under different weather conditions and seasons.

References

[1] CATOVSKY S, HOLBROOK N M, BAZZAZ F A. Coupling whole-tree transpiration and canopy photosynthesis in coniferous and broad-leaved tree species[J]. Canadian Journal of Forest Research,2002, 32(2):295-309. DOI: 10.1139/X01-199.
[2] WULLSCHLEGER S D, HANSON P J, TSCHAPLINSKI T J. Whole-plant water flux in understory red maple exposed to altered precipitation regimes[J]. Tree Physiology,1998, 18(2):71-79. DOI: 10.1093/treephys/18.2.71.
[3] GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology, 1987, 3(4):309-320. DOI: 10.1093/treephys/3.4.309.
[4] CIENCIALA E, KUCˇERA J, MALMER A. Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo[J]. Journal of Hydrology, 2000, 236(1-2):109-120. DOI: 10.1016/s0022-1694(00)00291-2.
[5] IIDA S, TAKEUCHI S. Establishment of risk indicator of transplanting trees by sap flow measurements: an interdisciplinary research of hydrology and horticulture[J]. Journal of Japanese Association of Hydrological Sciences, 2015, 45(3):89-94. DOI: 10.4145/jahs.45.89.
[6] CHU C R, HSIEH C I, WU S Y, et al. Transient response of sap flow to wind speed[J]. Journal of Experimental Botany, 2009, 60(1):249-255. DOI: 10.1093/jxb/ern282.
[7] SATO T, TANAKA N, TANAKA K, et al. Applicability of the thermal dissipation method(TDM)for sap flow measurement in teak trees[R]. Tokyo: Bulletin of the Tokyo University Forests, 2015, 133: 1-18.
[8] 丁访军, 王兵, 赵广东,等. 毛竹树干液流变化及其与气象因子的关系[J]. 林业科学, 2011, 47(7):73-81. DING F J,WANG B, ZHAO G D, et al. Sap flow changes of Phyllostachys edulis and their relationships with meteorological factors[J]. Scientia Silvae Sinicae, 2011, 47(7): 73-81.
[9] MARTíNEZ-VILALTA J, MANGIRóN M, OGAYA R, et al. Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions[J]. Tree Physiology, 2003, 23(11):747-758. DOI: 10.1093/treephys/23.11.747.
[10] 杨瑞, 喻理飞, 戴全厚. 喀斯特区云南鼠刺树干液流及土壤水分动态[J]. 水土保持通报, 2015, 35(2):89-93. DOI:10.13961/j.cnki.stbctb.2015.02.017. YANG R, YU L F, DAI Q H, Dynamics of soil moisture and sap flow of Itea yunnanensis in Karst region[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 89-93.
[11] 黄玉清, 张中峰, 何成新,等. 岩溶区青冈栎整树蒸腾的季节变化[J]. 应用生态学报, 2009, 20(2):256-264. HUANG Y Q, ZHANG Z F, HE C X, et al. Seasonal variation of Cylclobalanopsis glauca whole-tree transpiration in Karst region[J]. Chinese Journal of Applied Ecology, 2009, 20(2):256-264.
[12] GRANIER A. A new method of sap flow measurement in tree stems[J]. Annales Des Sciences Forestieres, 1985, 42(2):193-200.
[13] CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[J]. An Introduction to Environmental Biophysics, 1998, 21(2):104.
[14] MA L, LU P, ZHAO P, et al. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in South China[J]. Annals of Forest Science, 2008, 65(4): 402. DOI:10.1051/fores:2008013.
[15] MACINNIS-NG C, WYSE S, VEALE A, et al. Sap flow of the southern conifer, Agathis australis, during wet and dry summers[J]. Trees, 2016, 30(1):19-33. DOI:10.1007/s00468-015-1164-9.
[16] 王文杰, 孙伟, 邱岭,等. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1):77-85. DOI: 10.11707/j.1001-7488.20120113. WANG W J, SUN W, QIU L, et al. Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale[J]. Scientia Silvae Sinicae, 2012, 48(1):77-85.
[17] 桑玉强, 张劲松. 华北山区核桃液流变化特征及对不同时间尺度参考作物蒸敬量的响应[J]. 生态学报, 2011,34(23):6828-6836. DOI:10.5846/stxb201302280324. SANG Y Q, ZHANG J S. Characteristics of Juglans regia L. sap flow and its response to reference evapotranspiration on different time scales in the rocky mountain of North China[J]. Acta Ecologica Sinica,2011, 34(23):6828-6836.
[18] 涂洁, 刘琪璟, 王辉民, 等. 亚热带红壤区青冈栎液流特征及其与气象因子的相关性[J]. 东北林业大学学报, 2013, 41(9): 38-41,49. DOI:10.3969/j.issn.1000-5382.2013.09.010. TU J, LIU Q J, WANG H M, et al. Sap flow characteristics of cyclobalanopsis glauca and its correlationw ith metoe rologicla factors in substropical red soil area[J]. Journal of Northeast Forestry University, 2013,41(9):38-41,49. DOI:10.3969/j.issn.1000-5382.2013.09.010.
[19] 凡超,邱燕萍,李志强,等, 荔枝树干液流速率与气象因子的关系[J]. 生态学报, 2014, 34(9): 2401-2410. DOI: 10.5846/stxb201307041839. FAN C, QIU Y P, LI Z Q, et al, Relationships between stem sap flow rate of litchi trees and meteorological parameters[J].Acta Ecologica Sinica,2014,34(9):2401-2410.
[20] 梅婷婷, 王传宽, 赵平,等. 木荷树干液流的密度特征[J]. 林业科学, 2010, 46(1):40-47.DOI: 10.11707/j.1001-7488.20100107. MEI T T, WANG C K, ZHAO P, et al. Dynamics of trunk sap flux density of Schima superba[J]. Scientia Silvae Sinicae, 2010, 46(1): 40-47.
[21] 程静, 欧阳旭, 黄德卫,等. 鼎湖山针阔叶混交林4种优势树种树干液流特征[J]. 生态学报, 2015, 35(12):4097-4104. DOI:10.5846/stxb201310202533. CHENG J, OUYANG X, HUANG D W, et al. Sap flow characteristics of four dominant tree species in a mixed conifer broadleaf forest in Dinghushan[J].Acta Ecologica Sinica, 2015, 35(12): 4097-4104.
[22] 倪广艳, 赵平, 朱丽薇,等. 荷木整树蒸腾对干湿季土壤水分的水力响应[J]. 生态学报, 2015, 35(3):652-662. DOI:10.5846/stxb201305070962 NI G Y, ZHAO P, ZHU L W, et al. Hydraulic responses of whole tree transpiration of Schima superba to soil moisture in dry and wet seasons[J].Acta Ecologica Sinica,2015,35(3):652-662.
[23] 吴芳, 陈云明, 于占辉. 黄土高原半干旱区刺槐生长盛期树干液流动态[J]. 植物生态学报, 2010, 34(4):469-476. DOI:10.3773/j.issn.1005-264x.2010.04.013 WU F, CHEN Y M, YU Z H. Growing season sap-flow dynamics of Robinia pseudoacacia plantation in the semi-arid region of Loess Plateau, China[J]. Chinese Journal of Plant Ecology, 2010, 34(4):469-476.
[24] 马建新, 陈亚宁, 李卫红,等. 荒漠防护林典型树种液流特征及其对环境因子的响应[J]. 生态学报, 2010, 30(3):579-586. MA J X, CHEN Y N, LI W H, et al. Characteristics of sap flow of 4 typical shelter-belt tree species and it’s relationships with environmental factors in the desert region of northwest China[J]. Acta Ecologica Sinica, 2010, 30(3): 579-586.
[25] BOVARD B D, CURTIS P S, VOGEL C S, et al. Environmental controls on sap flow in a northern hardwood forest[J]. Tree Physiology, 2005, 25(1):31-38. DOI:10.1093/treephys/25.1.31.
[26] LAIJU N, OTIENO D, JUNG E Y, et al. Environmental controls on growing-season sap flow density of Quercus serrata Thunb in a temperate deciduous forest of Korea[J]. Journal of Ecology & Field Biology, 2012, 35(3):213-225. DOI: 10.5141/JEFB.2012.026.
[27] MARTINEZ-VILALTA J, MANGIRóN M, OGAYA R, et al. Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions[J]. Tree Physiology, 2003, 23(11):747-758. DOI: 10.1093/treephys/23.11.747.
[28] KUME T, TAKIZAWA H, YOSHIFUJI N, et al. Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand[J]. Forest Ecology & Management, 2007, 238(1-3):220-230. DOI: 10.1016/j.foreco.2006.10.019.

Last Update: 2017-05-20