我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

林分结构多样性参数与纹理信息相关分析中最优窗口的确定(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年03期
Page:
112-116
Column:
研究论文
publishdate:
2017-05-31

Article Info:/Info

Title:
Determining optimal window size based on correlation between texture information and stand structural diversity indices
Article ID:
1000-2006(2017)03-0112-05
Author(s):
WANG Jianjun MENG Jinghui*
Key Laboratory for Siviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083
Keywords:
forest structure texture information structural diversity window sizes SPOT5 Guangxi
Classification number :
S757
DOI:
10.3969/j.issn.1000-2006.201603008
Document Code:
-
Abstract:
【Objective】 Image textural features derived from optical remote sensing images have been widely used in forestry. Because window sizes can significantly influence the correlation between forest structural diversity and image textural features, in this study we attempted to determine the optimal window size based on the correlation coefficient for accurate estimation of forest structural diversity. 【Method】We first calculated forest structural diversity indices for 68 national forest inventory plots in the Guangxi Zhuang Autonomous region. Secondly, based on the SPOT-5 panchromatic band, we extracted textural features using different window sizes(3×3, 5×5, 7×7, 9×9, 11×11, 13×13 and 15×15). Finally, we performed Pearson correlation analysis between image textural features and forest structural diversity indices to determine the optimal window size. 【Result】The results showed that the correlation between forest structural diversity indices and textural features, i.e. entropy, homogeneity, angular second matrixes, contrast, dissimilarity, variation and mean value, exhibited fewer significant differences in response to changes in window size. In contrast, the change rate of the correlation coefficient between DBH standard deviation and image correlation index was as high as 86%. 【Conclusion】 Consequently, we determined the optimal window size to be 11 × 11 pixels.

References

[1] 雷相东,唐守正. 林分结构多样性指标研究综述[J]. 林业科学,2002,38(3):140-146.DOI:10.11707/j.1001-7488.20020325. LEI X D,TANG S Z. Institute of forest resource information techniques [J]. Scientia Silvae Sinicae, 2002,38(3): 140-146.
[2] 张锦水,潘耀忠,韩立建,等. 光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J]. 遥感学报,2007(4): 500-510. DOI:10.11834/jrs.20070470. ZHANG J S,PAN Y Z,HAN L J et al. Study on dynamic monitoring of land use / cover change based on spectral and texture information [J]. Journal of Remote Sensing, 2007(4): 500-510.
[3] 王妮,彭世揆,刘斌,等. 近10年江苏宿迁森林蓄积量变化的定量遥感监测[J]. 南京林业大学学报(自然科学版),2013,37(5):65-69. DOI:10.3969/j.issn.1000-2006.2013.05.013. WANG N, PENG S K, LIU B et al. A study on detecting the changes of the forest volume of Suqian in Jiangsu based on the quantitative remote sensing during 2000-2010[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2013,37(5):65-69.
[4] 梁尧钦,曾辉. 高光谱遥感在植被特征识别研究中的应用[J]. 世界林业研究, 2009,22(1): 41-47.DOI:10.13466/j.cnki.lyzygl.2011. 06. 022. LIANG Y Q,ZENG H. Application of hyperspectral remote sensing in identification of vegetation on characteristics [J]. World Forestry Research, 2009,22(1): 41-47.
[5] 陈丽,张晓丽,焦志敏. 基于混合像元分解模型的森林叶面积指数反演[J]. 农业工程学报,2013,29(13):124-129. DOI:10.3969/j.issn.1002-6819.2013.13.017. CHEN L, ZHANG X L, JIAO Z M et al. Reversion of leaf area index in forest based on linear mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(13):124-129.
[6] 谭炳香,李增元,陈尔学,等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究,2008,21(S1):105-111. DOI:10.3321/j.issn:1001-1498.2008.s1.021. TAN B X, LI Z Y, CHEN E X, et al Research advance in forest information extraction from hyoerspectral remote sensing data [J]. Forest Research, 2008,21(S1):105-111.
[7] OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from World View-2 multispectral imagery in a dry land forest,Israel [J]. International Journal of Applied Earth Observation and Geo-information,2011,13:701-710.DOI:10.1016/j.jag. 2011.05.006.
[8] 周靖靖,赵忠,刘金良,等. 基于快鸟影像纹理特性的刺槐林叶面积指数估算[J]. 应用生态学报,2014,25(5): 1266-1274. ZHOU J J, ZHAO Z, LIU J L,et al. Estimating leaf area index of black locust(Robina pseudoacacia L.)plantations based on texture parameters of Quick bird imagery[J]. Chinese Journal of Applied Ecology, 2014,24(5): 1266-1274.
[9] KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3/4): 390-401. DOI:10.1016/j.rse.2006.02.022.
[10] MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using spot imagery [J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(4): 513-519.
[11] 刘锦绣,刘平慧,吕颖,等. 变窗口纹理在SPOT5影像土地覆盖分类中的应用研究[J].地理与地理信息科学, 2013,29(5):26-30.DOI:10.7702/dlydlxxkx20130506. LIU J X, LIU P H, LYU Y,et al. An applied research of changing window texture land cover cassification using SPOT5 image [J]. Geography and Geo-Information Science, 2013,29(5):26-30.
[12] HUANG Y,YUE A Z, SU W, et al. Texture feature extraction for land-cover classification of remote sensing data in land consolidation district using semi-variogram[J]. Appled Computer & Appled Computation Science, 2008,7(7):857-864.
[13] PATHAK V, DIKSHIT O. A new approach for finding an appropriate combination of texture parameters for classification[J]. Geocarto International, 2010, 25(4):295-313.
[14] SHABAN M A, DIKSHIT O. Evaluation of merging SPOT multispectral and panchromatic data for classification of urban environment[C]// Geoscience and Remote Sensing Symposium, 1999. IGARSS ’99 Proceedings. IEEE, 1999, 2:1214-1216.DOI:10.1109/IGARSS.1999.774582.
[15] 黎良财,张晓丽,郭航. 基于 SVM 方法的 SPOT-5影像植被分类[J]. 东北林业大学学报,2014,42(1): 51-56. LI L C,ZHANG X L, GUO H. Vegetation extraction in SPOT5 image with SVM method [J]. Journal of Northeast Forestry University,2014,42(1): 51-56.
[16] 宁亮亮,张晓丽. 基于纹理信息的Landsat-8影像植被分类初探[J].中南林业科技大学学报,2014,34(9):60-64.DOI:10.3969/ j.issn.1673-923X.2014.09.012. NING L L,ZHANG X L. A preliminary study on vegetation classification based on texture information of Landsat-8 images [J].Journal of Central South University of Forestry & Technology, 2014,34(9): 60-64.
[17] 王妮,彭世揆,李明诗. 基于树种分类的高分辨率遥感数据纹理特征分析[J]. 浙江农林大学学报, 2012,29(2): 210-217. DOI:10.3969/j.issn.2095-0756.2012.02.010. WANG N,PENG S K,LI M S. High-resolution remote sensing of textural images for tree species classification [J]. Journal of Zhejiang Forestry College, 2012(2): 210-217.
[18] MIGUEL A C, MARTIN R, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images [J]. International Journal of Remote Sensing,2010,31(10): 2767-2782.DOI:10.1080/01431160903095460.
[19]MAGURARRAN A E. Measuring biological diversity[J]. African Journal of Aquatic Science, 2004, 29(2):285-286.
[20] LI Y F, HUI G, ZHAO Z H, et al. The bivariate distribution characteristics of spatial structure in natural[J]. Journal of Vegetation Science, 2012, 23(6):1180-1190. DOI: 10.1111/j.1654-1103.2012.01431.x.
[21] 胡艳波,惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006, 19(6):1-8. HU Y B,HUI G Y. A discussion on forest management method optimizing forest spatial structure [J]. Forest Research, 2006, 19(6):1-8.
[22] 惠刚盈,李丽,赵中华,等. 林木空间分布格局分析方法[J]. 生态学报,2007,27(11):4717-4728. DOI:10.3321/j.issn:1000-0933.2007.11.040. HUI G Y,LI L,ZHAO Z H, et al. Comparison of methods in analysis of the tree spatial distribution pattern[J]. Acta Ecologica Sinica, 2007, 27(11): 4717-4728.
[23] EGGERS J J, BAUML R, TZSCHOPPE R, et al. Scalar costa scheme for information embedding[J]. IEEE Transactions on Signal Processing, 2003, 51(4):1003-1019. DOI:10.1109/TSP.2003.809366.

Last Update: 2017-05-20