我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

阻燃氨基树脂对胶合板燃烧时CO和CO2释放的影响(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年03期
Page:
140-144
Column:
研究论文
publishdate:
2017-05-31

Article Info:/Info

Title:
Influence of inrumescent flame retardants and the amino resin on CO and CO2 production of wood materials
Article ID:
1000-2006(2017)03-0140-05
Author(s):
WANG Zhen QU Wei* WU Yuzhang
Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
Keywords:
wood materials MUF inrumescent flame retardants emission yields of CO and CO2 cone calorimeter
Classification number :
S782.39; TS653.3
DOI:
10.3969/j.issn.1000-2006.201603038
Document Code:
-
Abstract:
【Objective】The influence of intumescent flame retardants and amino resin(IFR-MUF)on CO and CO2 production of wood materials was investigated.【Method】CO and CO2 production of Eucalyptus saligna, E. saligna plywood, and E. saligna flame-retarding plywood was studied using a cone calorimeter(CONE)at 30 and 50 kW/m2. 【Result】The rate of CO2 production was highest during ignition and carbon combustion stages. The rate of CO production was highest at the smoldering stage, while the most significant effect of the radiance level on CO production rate was observed during carbonization. The utilized amino resin promoted the integrity of char layers, negatively affecting smoke release during the carbonization stage and enhancing CO2 production during the carbon combustion stage. The thermal conductivity of the carbon layer was higher than that of the airmade 2nd peak of the CO and CO2 production rate curves earlier. The effect of IFR-MUF on CO production was closely related to radiance levels, with CO emission yields being markedly increased at lower radiance levels. 【Conclusion】 The trend observed for the CO2 production rate agreed with that of the mass loss rate, being slightly affected by radiance levels. IFR-MUF increased CO emission yields and decreased those of CO2.

References

[1] 邱榕, 范维澄. 火灾常见有害燃烧产物的生物毒理(Ⅰ)——一氧化碳、氰化氢[J]. 火灾科学, 2001, 10(3): 154-158. QIU R, FAN W C. Biological toxicology of harmful reactive products in fire(Ⅰ): carbon monoxide, hydrogen cyanide[J]. Fire Safety Science, 2001, 10(3): 154-158.
[2] 黎强, 刘清辉, 张慧, 等. 火灾烟气中有毒气体的体积分数分布与危害[J]. 自然灾害学报, 2003, 12(3): 69-74. LI Q, LIU Q H, ZHANG H,et al. Concentration distribution and hazard of toxic gas in fire smoke[J]. Journal of National Disasters, 2003, 12(3): 69-74.
[3] 刘军军, 李风, 兰彬, 等. 火灾烟气毒性研究的进展[J]. 消防科学与技术, 2005, 24(6): 674-678. LIU J J, LI F, LAN B, et al. Development of fire smoke toxicity research[J]. Fire Science and Technology, 2005, 24(6): 674-678.
[4] 李社峰, 方梦祥, 舒立福, 等. 几种常用木材热解(燃烧)后的烟气析出规律试验研究[J]. 能源工程, 2006(2):6-11. LI S F, FANG M X, SHU L F, et al. Experimental study on releasing characterization of smoke from burning of several typical woods[J]. Energy Engineering, 2006(2):6-11.
[5] 吕子安, 连晨舟, 季春生, 等. 火灾中材料产烟毒性的分析[J]. 清华大学学报(自然科学版), 2004, 44(2): 278-281. LU Z A, LIAN C Z, JI C S, et al. Toxicity analysis of smoke from materials burnt in fires[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(2): 278-281.
[6] 王奉强, 张志军, 王清文, 等. 膨胀型水性改性氨基树脂木材阻燃涂料的阻燃和抑烟性能[J]. 林业科学, 2007, 43(12): 117-121. WANG F Q, ZHANG Z J, WANG Q W, et al. Fire-retardant and smoke-suppressant performance of an intumescent waterborne amino-resin fire-retardant coating for wood[J]. Scientia Silvae Sinicae, 2007, 43(12): 117-121.
[7] 陈志林, 李双昌. 木质地板阻燃性能的研究[J]. 消防科学与技术, 2010, 29(9): 815-817. CHEN Z L, LI S C. Fire-retardant performance of wood floor[J]. Fire Science and Technology,2010, 29(9): 815-817.
[8] 朱海龙, 吴玉章, 孙伟圣. 阻燃氨基树脂的制备及性能[J]. 消防科学与技术, 2012, 31(12): 1326-1328. ZHU H L, WU Y Z, SUN W S. Preparation and flame retardancy of intumescent flame-retarded amino resin[J]. Fire Science and Technology,2012, 31(12): 1326-1328.
[9] International Organization for Standardization. ISO 5660-1, Reaction-to-fire test—Heat release, smoke production and mass loss rate—Part 1: heat release rate(cone calorimeter method)[S]. Switzerland: International Organization for Standardization, 2002.
[10] International Organization for Standardization. ISO 5660-2, Reaction-to-fire test—Heat release, smoke production and mass loss rate—Part 2: Smoke production rate(dynamic measurement)[S]. Switzerland: International Organization for Standardization, 2002.
[11] 白晓艳, 王清文, 隋淑娟. CuO对木粉/PVC复合材料热解和燃烧过程中烟释放行为的影响[J]. 燃烧科学与技术, 2010, 16(1): 35-39. BAI X Y, WANG Q W, SUI S J. Influence of CuO on smoke release behavior in pyrolysis and combustion of wood-flour/poly vinyl chloride composite[J]. Journal of Combustion Science and Technology,2010, 16(1): 35-39.
[12] 季经纬, 杨立中, 范维澄. 外部热辐射对材料燃烧性能影响的实验研究[J]. 燃烧科学与技术, 2003, 9(2): 139-143. JI J W, YANG L Z, FAN W C. Experimental study on effects of burning behaviours of materials caused by external heat radiation[J]. Journal of Combustion Science and Technology, 2003, 9(2): 139-143.
[13] 吴玉章, 原田寿郎. 人工林木材燃烧性能的研究[J]. 林业科学, 2004, 40(2): 131-136. WU Y Z, TOSHIRO H. Study on the burning behaviour of plantation wood[J]. Scientia Silvae Sinicae,2004, 40(2): 131-136.
[14] 王真, 吴玉章, 马星霞. 木材及木质复合材料的燃烧发烟规律[J]. 南京林业大学学报(自然科学版), 2015, 39(4): 121-126. DOI: 10.3969/j.issn.1000-2006.2015.04.020. WANG Z, WU Y Z, MA X X. Smoke regularity of wood and wood-based panels[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(4): 121-126.
[15] REISEN F, BHUJEL M, LEONARD J. Particle and volatile organic emissions from the combustion of a range of building and furnishing materials using a cone calorimeter[J]. Fire Safety Journal, 2014, 69: 76-88.
[16] FATEH T, ROGAUME T, LUCHE J, et al. Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 87-100.
[17] CHUANG C S, YANG T H, TSAI K C, et al. Fire retardancy and CO/CO2 emission of intumescent coatings on thin plywood panel with waterborne vinyl acetate-acrylic resin[J]. Wood Science and Technology, 2013, 47(2): 353-367.

Last Update: 2017-05-20