我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

模拟氮沉降对杨树人工林土壤微生物群落碳源利用类型的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年05期
Page:
1-6
Column:
专题报道
publishdate:
2017-09-30

Article Info:/Info

Title:
Effects of nitrogen deposition on soil microbial community C-source metabolism of poplar plantation
Article ID:
1000-2006(2017)05-0001-06
Author(s):
MA Huijun ZHANG Yakun XU Wenhuan GE Zhiwei RUAN Honghua
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:nitrogen deposition soil microbial C-source metabolism functional diversity of community poplar plantation
Classification number :
S718; S714
DOI:
10.3969/j.issn.1000-2006.201606014
Document Code:
A
Abstract:
【Objective】Study the effects of elevated nitrogen deposition on soil microbial community structure in a poplar plantation.【Method】 The field experiment was designed at Dongtai Forestry Farm in Jiangsu Province, a coastal area of eastern China in June 2015, and we used Biolog ECO method and conducted nitrogen addition at four levels: N0(0 kg/(hm2·a)), N1(50 kg/(hm2·a)), N2(100 kg/(hm2·a)), and N3(150 kg/(hm2·a)). 【Result】The soil microbial C-source metabolic capacity was improved under N2 treatment, but was inhibited under higher levels of nitrogen deposition. Utilization of phenols and amines were the highest in N3 and N1, respectively. Average well color development(AWCD)and the Shannon diversity index were both significantly and positively correlated with nitrate nitrogen content(P<0.05), indicating that the C-source metabolism and community structure were influenced significantly by nitrate nitrogen content. The PC1 and PC2 in a principal component analysis(PCA)accounted for 50.04% and 25.02%, respectively, of the variation in microbial community metabolic diversity caused by nitrogen deposition. The PC1 was correlated with carbohydrates(-0.869), phenols(-0.780), amino acids(0.702)and carboxylic acids(0.821). The PC2 was correlated with polymers(-0.688)and amines(0.802).【Conclusion】After two years of nitrogen addition during May-October each year, the nitrogen amendment significantly changed the types of carbon utilized by the microbial community. There were significantly positive correlations between the contents of soil nitrate nitrogen and bacterial carbon metabolism levels as well as the diversity indices. The results of PCA indicated that the dominant carbon sources were carbohydrates and carboxylic acid.

References

[1] MOOSHAMMER M, WANEK W, HAMMERLE I, et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling[J].Nat Commun,2014,(5):3694. DOI:10.1038/ncomms4694.
[2] 常运华, 刘学军, 李凯辉. 大气氮沉降研究进展[J].干旱区研究, 2012,29(6): 972-979. CHANG Y H, LIU X J, LI K H. Research progress in atmospheric nitrogen deposition[J]. Arid Zone Research, 2012,29(6): 972-979.
[3] KAYE J P, HART S C. Competition for nitrogen between plants and soil microorganisms[J].Trends Ecol Ecol(Amst), 1997, 12(4): 139-143. DOI:10.1016/s0169-5347(97)01001-x.
[4] 赵超, 张文文, 阮宏华. 模拟氮沉降对杨树人工林土壤微生物群落结构的影响[J]. 生态学杂志,2015,34(2): 360-366. ZHAO C, ZHANG W W, RUAN H H. Effects of elevated nitrogen deposition on microbial community structure in poplar plantation[J]. Chinese Journal of Ecology, 2015,34(2): 360-366.
[5] 张乃莉, 郭继勋, 王晓宇. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007,31(2): 252-261. ZHANG N L, GUO J X, WANG X Y. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology, 2007,31(2): 252-261.
[6] KRUMINS J A, DIGHTON J, GRAY D, et al. Soil microbial community response to nitrogen enrichment in two scrub oak forests[J]. Forest Ecology and Management, 2009, 258(7): 1383-1390. DOI:10.1016/j.foreco.2009.06.046.
[7] INSELSBACHER E, RIPKA K, KLAUBAUF S, et al. A cost-effective high-throughput microcosm system for studying nitrogen dynamics at the plant-microbe-soil interface[J].Plant Soil, 2008, 317(1): 293-307. DOI:10.1007/s11104-008-9809-8.
[8] RAMIREZ K S, CRAINE J M, FIERER N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J].Global Change Biology,2012,18(6): 1918-1927. DOI:10.1111/j.1365-2486.2012.02639.x.
[9] COOLON J D, JONES K L, TODD T C, et al. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie[J]. PLoS One, 2013, 8(6): e67884. DOI:10.1371/journal.pone.0067884.
[10] ARONSON E L, DUBINSKY E A, HELLIKER B R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil[J]. Soil Biology and Biochemistry, 2013, 62: 119-128. DOI:10.1016/j.soilbio.2013.03.005.
[11] XU X, OUYANG H, RICHTER A, et al. Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow[J].Journal of Ecology, 2011,99(2): 563-571.DOI:10.1111/j.1365-2745.2010.01789.x.
[12] GHANI A, DEXTER M, Perrott K W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J].Soil Biology and Biochemistry, 2003, 35(9): 1231-1243. DOI:10.1016/s0038-0717(03)00186-x.
[13] JONES D, WILLETT V. Experimental evaluation of methods to quantify dissolved organic nitrogen(DON)and dissolved organic carbon(DOC)in soil[J]. Soil Biology and Biochemistry, 2006, 38(5): 991-999. DOI:10.1016/j.soilbio.2005.08.012.
[14] FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J].Forest Ecology and Management, 2004, 196(1): 159-171. DOI:10.1016/j.foreco.2004.03.018.
[15] 赵瑞芬, 于志勇, 程滨. 不同前处理条件对土壤NO-3-N、NH+4-N含量影响的研究[J].中国农学通报, 2009, 25(10): 174-177. ZHAO R F, YU Z Y, CHENG B. Effects of pretreatment on content of soil NO-3-N, NH+4-N [J]. Chinese Agricultural Science Bulletin, 2009, 25(10): 174-177.
[16] 田雅楠,王红旗. Biolog法在环境微生物功能多样性研究中的应用[J].环境科学与技术, 2011, 34(3): 50-57. DOI:10.3969/j.issn.1003-6504.2011.03.012. TIAN Y N, WANG H Q. Application of biolog to study of environmental microbial function diversity [J]. Environmental Science & Technology, 2011, 34(3): 50-57.
[17] 许文欢, 张雅坤, 王国兵. 不同施肥方式对苏北杨树人工林土壤微生物碳源代谢的影响[J]. 生态学杂志, 2015, 34(7): 1791-1797. XU W H, ZHANG Y K, WANG G B. Response of carbon metabolism by soil microbes to different fertilization regimes in a poplar plantation in coastal area of northern Jiangsu,China[J]. Chinese Journal of Ecology, 2015, 34(7): 1791-1797.
[18] 邵元元, 王志英, 邹莉. 百菌清对落叶松人工防护林土壤微生物群落的影响[J].生态学报, 2011, 31(3): 819-829. SHAO Y Y, WANG Z Y, ZOU L. Effect of chlorothalonil on soil microbial communities of Larix artificial shelter-forest [J]. Acta Ecologica Sinica, 2011,31(3): 819-829.
[19] 孔维栋, 刘可星, 廖宗文. 不同腐熟程度有机物料对土壤微生物群落功能多样性的影响[J]. 生态学报, 2005(9): 2291-2296. DOI:10.3321/j.issn:1000-0933.2005.09.022. KONG W D, LIU K X, LIAO Z W. Effects of organic matters on metabolic functional diversity of soil microbial community under pot incubation conditions [J]. Acta Ecologica Sinica, 2005(9): 2291-2296.
[20] 宋蕾, 林尤伟, 金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J].南京林业大学学报(自然科学版),2017,41(5):7-12. DOI:10.3969/j.issn.1000-2006.201607039. SONG L, LIN Y W, JIN G Z. Effect of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in a mixed broadleaved Korean pine forest[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017,41(5):7-12.
[21] 蒋岁寒, 刘艳霞, 孟琳, 等. 生物有机肥对烟草青枯病的田间防效及根际土壤微生物的影响[J]. 南京农业大学学报, 2016, 39(5): 784-790. DOI: 10.7685 /jnau.201601053. JIANG S H, LIU Y X, MENG L, et al. Effects of biological organic fertilizer on field control efficiency of tobacco Ralstonia solanacearum wilt and soil microbial in rhizosphere soil[J]. Journal of Nanjing Agricultural University, 2016, 39(5): 784-790.
[22] 周新刚.连作黄瓜土壤生态环境特征及对黄瓜生长的影响[D]. 哈尔滨:东北农业大学,2011. ZHOU X G. Effects of continuous cropping cucumber on soil ecosystem properties and cucumber growth[D]. Harbin:Northeast Agriculture University, 2011.
[23] 胡婵娟, 傅伯杰, 刘国华. 黄土丘陵沟壑区典型人工林下土壤微生物功能多样性[J]. 生态学报, 2009, 29(2): 727-733.DOI: 10.3321/j.issn:1000-0933.2009.02.022 HU C J, FU B J, LIU G H. Soil microbial functional and diversity under typical artificial woodlands in the hilly area of the Loess Plateau[J]. Acta Ecologica Sinica, 2009, 29(2): 727-733.
[24] 刘蔚秋, 刘滨扬, 王江. 不同环境条件下土壤微生物对模拟大气氮沉降的响应[J]. 生态学报, 2010, 30(7): 1691-1698. LIU W Q, LIU B Y, WANG J. Responses of soilm icrobial communities to moss cover and nitrogen addition[J]. Acta Ecologica Sinica, 2010, 30(7): 1691-1698.
[25] 王光华, 刘俊杰, 齐晓宁. Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功的影响[J].生态学报, 2008(1): 220-226. DOI:10.3321/j.issn:1000-0933.2008.01.025. WANG G H, LIU J J, QI X N. Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods[J]. Acta Ecologica Sinica, 2008(1): 220-226.
[26] 顾美英, 徐万里, 茆军. 新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性[J]. 生态学报, 2012, 32(10): 3031-3040. DOI:10.5846/stxb201104170503. GU M Y, XU W L, MAO J. Microbial community diversity of rhizosphere soil in continuous cotton cropping system in Xinjiang [J]. Acta Ecologica Sinica, 2012, 32(10): 3031-3040.
[27] 李阳, 王继红. 长期施肥土壤腐殖质变化及其与土壤酸度变化的关系[J]. 南京农业大学学报, 2016, 39(1): 114-119. DOI: 10.7685 /jnau.201606035. LI Y, WANG J H. Variation of soil humus under long-term fertilization andits relation to soil acidity[J]. Journal of Nanjing Agricultural University, 2016, 39(1): 114-119.
[28] 林瑞余, 戎红, 周军建. 苗期化感水稻对根际土壤微生物群落及其功能多样性的影响[J]. 生态学报, 2007, 27(9): 3644-3654.DOI: 10.3321/j.issn:1000-0933.2007.09.012. LIN R Y, RONG H, ZHOU J J. Impact of rice seedling allelopathy on rhizospheric microbial populations and their functional diversities[J]. Acta Ecologica Sinica, 2007, 27(9): 3644-3654.

Last Update: 1900-01-01