我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年05期
Page:
18-26
Column:
专题报道
publishdate:
2017-09-30

Article Info:/Info

Title:
Responses of soil physicochemical properties and soil microorganism characteristics regareding as carbon metabolism in original Korean pine forest
Article ID:
1000-2006(2017)05-0018-09
Author(s):
SUN Xue1HAN Dongxue1LIU Yan1FENG Fujuan1*SUI Xin2
1. College of Life Science, Northeast Forestry University, Harbin 150040, China; 2. Institute of Nature & Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
Keywords:
Keywords:original Korean pine forest soil microorganism Biolog carbon metabolism precipitation
Classification number :
Q938
DOI:
10.3969/j.issn.1000-2006.201609042
Document Code:
A
Abstract:
【Objective】Understand the seasonal variations and mechanisms of the differences in the soil microbial community and soil physicochemical properties for a original Korean pine forest, and explore the seasonal changes in the soil physicochemical properties in response to meteorological factors.【Method】The study site was located in Xiaoxing'an Mountain, a typical original broadleaf Korean pine forest, and the soil(0-10 cm and ≥10-20 cm)was sampled from May to October in 2015. The soil microbial functional diversity and soil physicochemical properties were measured by using the Biolog microplate method and conventional measurement methods. 【Result】 The soil physicochemical properties had significant differences in different months. The average well color development(increased of AWCD)value gradually with prolonged culture time; the increase of AWCD value gradually weakened after 168 hours. The AWCD values and microbial diversity were significantly different among months. The metabolic activity of the soil microbial community had significant seasonal variation, and was the lowest in July and the highest in June(P < 0.05). Amino acids, polymers, and carbohydrates were the dominant carbon sources. The results of principal component analysis(PCA)showed that the metabolic characteristics of soil microbial community carbon were divided into three clusters: May to June, July, and from August to October. The utilization of carbohydrates, amino acids and carboxylic acids were more sensitive to seasonal variations than that use of other carbon sources. The results of correlation analysis showed that AWCD value and microbial diversity indices had significant positive correlations with available P, available K, soil water content, and available N. Soil water content(which explained 12.76% of the variance), available P(which explained 30.71%)were the main factors that affected the seasonal variation in microbial functional diversity according to variation partition analysis.【Conclusion】The soil physicochemical properties and microbial functional carbon metabolism characteristics were significantly different during the growth season and the non-growth season in the original broadleaf Korean pine forest, and this was most significantly influenced by different precipitation in different months.

References

[1] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19):5437-5448. LIU S R, WANG H, LUAN J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19):5437-5448.
[2] 彭赛, 张雅坤, 葛之葳,等. 氮沉降对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版),2016, 40(1):1-7.DOI:10.3969/j.issn.1000-2006.2016.01.001. PENG S, ZHANG Y B, GE Z W, et al. Effects of nitrogen deposition on littres decomposition by microorganisms in forests[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(1):1-7.
[3] MA J, BU R, LIU M, et al. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China[J]. Ecological Engineering, 2015, 81:353-362. DOI:10.1016/j.ecoleng.2015.04.080.
[4] 吴平, 薛建辉. 典型喀斯特地区3种人工林对土壤理化和微生物特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(5):67-72.DOI: 10.3969 / j.issn.1000-2006.2015.05.011. WU P, XUE J H. Effects of three different plantations on soil physicochemical and microbial characteristics in Krast region[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(5):67-72.
[5] YANG D, ZHANG M. Effects of land-use conversion from paddy field to orchard farm on soil microbial genetic diversity and community structure[J]. European Journal of Soil Biology, 2014, 64:30-39. DOI:10.1016/j.ejsobi.2014.07.003.
[6] 韩冬雪, 王宁, 王楠楠, 等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 2015, 26(12):3649-3656.DOI:10.13287/j.1001-9332.20150929.017. HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3649-3656.
[7] 曹成有, 姚金冬, 韩晓姝,等. 科尔沁沙地小叶锦鸡儿固沙群落土壤微生物功能多样性[J]. 应用生态学报, 2011, 22(9):2309-2315. DOI:10.13287/j.1001-9332.2011.0326. CAO C Y, YAO J D, HAN X S, et al. Soil microbes functional diversity in sand-fixing Caragana microphylla communities in Horqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2011, 22(9):2309-2315.
[8] 丘阳, 高露双, 张雪,等. 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响[J]. 应用生态学报, 2014, 25(7):1870-1878.DOI:10.13287/j.1001-9332.20140425.006. QIU Y, GAO L S, ZHANG X, et al. Effect of climate change on net primary pro-ductivity of Korean pine at different successional stages of broad-leaved Korean pine forest[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1870-1878.
[9] 王宁, 杨雪, 李世兰,等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52(1):150-158.DOI: 10.11707 /j.1001-7488.20160118. WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Scientla Silvae Sinicae, 2016, 52(1):150-158.
[10] 王楠楠, 韩冬雪, 孙雪,等. 降水变化对红松阔叶林土壤微生物功能多样性的影响[J]. 生态学报, 2017, 37(3):1-9.DOI: 10.5846/stxb201509101873. WANG N N, HAN D X, SUN X, et al. Effects of precipitation change on soil microbial functional diversity in the primitive Korean pine and broad leaved forests[J]. Acta Ecologica Sinica, 2017, 37(3):1-9.
[11] BISSETT A, RICHARDSON A E, BAKER G, et al.Bacterial community response to tillage and nutrient additions in a long-term wheat cropping experiment[J]. Soil Biology & Biochemistry, 2013, 58(2):281-292.DOI:10.1016/j.soilbio.2012.12.002.
[12] CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Applied Soil Ecology, 2015, 92:35-44. DOI:10.1016/j.apsoil.2015.01.018.
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU R K. The method of soil agricultural chemical analysis[M]. Beijing: China Agriculture Science & Technology Press, 2000.
[14] ZHANG N, WAN S, GUO J, et al. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands[J]. Soil Biology & Biochemistry, 2015, 89(6):12-23.DOI:10.1016/j.soilbio.2015.06.022.
[15] LIU B, LI Y, ZHANG X, et al. Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog Eco PlatesTM[J]. European Journal of Soil Biology, 2015, 68:69-76. DOI:10.1016/j.ejsobi.2015.01.002.
[16] FLORES-RERTERÍA D, RINCÓN A, VALLADARES F, et al. Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest[J]. Soil Biology & Biochemistry, 2016, 92:79-90. DOI:10.1016/j.soilbio.2015.09.015.
[17] ZHANG X, WANG X, TANG Q, et al. Effects of cultivation of Osr HSA transgenic rice on functional diversity of microbial communities in the soil rhizosphere[J]. Crop Journal, 2015, 3(2):163-167. DOI:org/10.1016/j.cj.2014.11.001.
[18] QIAN X, GU J, PAN H J, et al. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils[J]. European Journal of Soil Biology, 2015, 70:23-30. DOI:10.1016/j.ejsobi.2015.06.005.
[19] 胡嵩, 张颖, 史荣久,等. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报, 2013, 24(2):366-372.DOI:10.13287/j.1001-9332.2013.0168. HU S, ZHANG Y, SHI R J, et al. Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in Changbai Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(2):366-372.
[20] 郑学博, 樊剑波, 崔键,等. 沼液还田对旱地红壤微生物群落代谢与多样性的影响[J]. 生态学报, 2016, 18:1-11.DOI:10.5846/stxb201503230555. ZHENG X B, FAN J B, CUI J, et al. Analysis on metabolic characterisitices ang functiongal diversity of soil edaphon communities in upland red soil underbiogas siurry application[J].Acta Ecologica Sinica, 2016,18:1-11.
[21] ZHANG H, LI G, SONG X, et al. Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land[J]. Acta Ecologica Sinica, 2013, 33(1):38-44. DOI:10.1016/j.chnaes.2012.12.006.
[22] 闫法军, 田相利, 董双林,等. 刺参池塘底质微生物群落功能多样性的季节变化[J]. 生态学报, 2014, 34(11):2996-3006.DOI: 10.5846 /stxb201211231655. YAN F J, TIAN X L, DONG S L, et al. Seasonal variation of functional diversity of microbial communities in sediment and shelter of sea cucumber(Apostichopus japonicus)cultural ponds[J]. Acta Ecologica Sinica, 2014, 34(11):2996-3006.
[23] HOOGMOED M, CUNNINGHAM S C, BAKER P, et al. N-fixing trees in restoration plantings: effects on nitrogen supply and soil microbial communities[J]. Soil Biology & Biochemistry, 2014, 77(7):203-212. DOI:10.1016/j.soilbio.2014.06.008.
[24] 鲁顺保, 郭晓敏, 芮亦超,等. 澳大利亚亚热带不同森林土壤微生物群落对碳源的利用[J]. 生态学报, 2012, 32(9):2819-2826.DOI:10.5846/stxb201103270392. LU S B, GUO X M, RUI Y C, et al. Utilization of carbon sources by the soil microbial communities of different forest types in subtropical Australia[J]. Acta Ecologica Sinica, 2012, 32(9):2819-2826.
[25] 范瑞英, 杨小燕, 王恩姮,等. 黑土区不同林龄落叶松人工林土壤微生物群落功能多样性的对比研究[J]. 北京林业大学学报, 2013, 35(2):63-68.DOI:10.13332/j.1000-1522.2013.02.009. FAN R Y, YANG X Y, WANG E H, et al. Comparative studies on functional diversity of soil microbial community of larch plantations with different ages in black soil region, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(2):63-68.
[26] 闫法军, 田相利, 董双林,等. 刺参养殖池塘水体微生物群落功能多样性的季节变化[J]. 应用生态学报, 2014, 25(5):1499-1505.DOI:10.13287/j.1001-9332.2014.0012. YAN F J, TIAN X L, DONG S L, et al. Seasonal variation of functional diversity of aquatic microbial community in Apostichopus japonicus cultural pond[J]. Chinese Journal of Applied Ecology, 2014, 25(5):1499-1505.
[27] 王宁, 王美菊, 李世兰,等. 降水变化对红松阔叶林土壤微生物生物量生长季动态的影响[J]. 应用生态学报, 2015, 26(5):1297-1305.DOI:10.13287/j.1001-9332.20150302.015. WANG N, WANG M J, LI S L, et al. Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1297-1305.
[28] 王楠楠, 杨雪, 李世兰,等. 降水变化驱动下红松阔叶林土壤真菌多样性的分布格局[J]. 应用生态学报, 2013, 24(7):1985-1990. DOI:10.13287/j.1001-9332.2013.0435. WANG N N, YANG X, LI S L, et al. Effects of precipitation variation on the distribution pattern of soil fungal diversity in broad-leaved Korean pine mixed forest[J]. Chinese Journal of Applied Ecology, 2013, 24(7):1985-1990.
[29] INNANGI M, SCHENK M K, D'ALESSANDRO F, et al. Field and microcosms decomposition dynamics of European beech leaf litter: influence of climate, plant material and soil with focus on N and Mn[J]. Applied Soil Ecology, 2015, 93:88-97. DOI:10.1016/j.apsoil.2015.04.007.
[30] 赵凤霞. 阔叶红松林不同演替阶段的凋落物分解研究[D]. 哈尔滨:东北林业大学, 2008. ZHAO F X. Decomposition of litter in different successional stages of broad leaved Korean pine forest[D]. Harbin:Northeast Forestry University,2008.
[31] URBANOVÁ M, SNAJDR J, BALDRIAN P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biology & Biochemistry, 2015, 84:53-64. DOI:10.1016/j.soilbio.2015.02.011.
[32] 马玲, 马琨, 汤梦洁,等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响[J]. 生态环境学报, 2013, 22(8):1341-1347. DOI:10.16258/j.cnki.1674-5906.2013.08.016. MA L, MA K, TANG M J, et al. Effects of intecropping and inoculation of AMF on the microbial community structure and function of continuous cropping soil[J]. Ecology and Environmental Sciences, 2013, 22(8):1341-1347.
[33] 陈法霖, 郑华, 阳柏苏, 等. 外来种湿地松凋落物对土壤微生物群落结构和功能的影响[J].生态学报, 2011, 31(12):3543-3550. CHEN F L, ZHENG H, YANG B S, et al. Effects of exotic species slash pine(Pinus elliottii)litter on the structure and function of the soil microbial community[J]. Chinese Journal of Applied Ecology, 2011, 31(12):3543-3550.
[34] CARACCIOLO A B, BUSTAMANTE M A, NOGUES I, et al. Changes in microbial community structure and functioning of a semiarid soil due to the use of anaerobic digestate derived composts and rosemary plants[J]. Geoderma, 2015, 245/246:89-97. DOI:10.1016/j.geoderma.2015.01.021.

Last Update: 1900-01-01