可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:
[1] 毛伟,李玉霖,崔夺,等. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态报, 2014, 38(2): 125-133. DOI: 10.3724/SP.J.1258.2014.00011.
MAO W, LI Y L, CUI D, et al. Biomass allocation response of species with different life history strategies to nitrogen and water addition in sandy grassland in Inner Mongolia[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 125-133.
[2] 贾全全,罗春旺,刘琪璟,等. 不同林分密度油松人工林生物量分配模式[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 87-92. DOI: 10.3969/j.issn.1000-2006.2015.06.016.
JIA Q Q, LUO C W, LIU Q J, et al. Biomass allocation in relation to stand density in Pinus tabuliformis plantation[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6): 87-92.
[3] GRETHER G F. Environmental change, phenotypic plasticity, and genetic compensation[J]. American Naturalist, 2005, 166(4): 115-123. DOI: 10.1086/432023.
[4] 杨元武,王根轩,李希来,等. 植物密度调控及其对环境变化响应的研究进展[J]. 生态学杂志, 2011, 30(8): 1813-1821. DOI: 10.13292/j.1000-4890.2011.0276.
YANG Y W, WANG G X, LI X L, et al. Research advances in plant density-dependent regulation and its responses to environmental change[J]. Chinese Journal of Ecology, 2011, 30(8): 1813-1821.
[5] 黄迎新,赵学勇,张洪轩,等. 沙米表型可塑性对土壤养分、水分和种群密度变化的响应[J]. 应用生态学报, 2008, 19(12): 2593-2598. DOI: 10.13287/j.1001-9332.2008.0041.
HUANG Y X, ZHAO X Y, ZHANG H X, et al. Responses of Agriophyllum squarrosum phenotypic plasticity to the changes of soil nutrient and moisture contents and population density[J]. Chinese Journal of Applied Ecology, 2008, 19(12): 2593-2598.
[6] 田海涛,高培军,温国胜. 7种箬竹抗寒特性比较[J]. 浙江林学院学报, 2006, 23(6): 641-646. DOI: 10.3969/j.issn.2095-0756.2006.06.008.
TIAN H T, GAO P J, WEN G S. Comparative study of cold resistance characteristics in seven Indocalamus spp.[J]. Journal of Zhejiang Forestry College, 2006, 23(6): 641-646.
[7] 江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002: 24-27.
[8] 周芳纯. 竹林培育学[M]. 北京: 中国林业出版社, 1998: 29.
[9] 庄明浩,陈双林,李迎春,等. CO2浓度升高对三种地被类观赏竹生理特性的影响[J]. 应用生态学报, 2013, 24(9): 2408-2414.
ZHUANG M H, CHEN S L, LI Y C, et al. Effects of elevated CO2 concentration on physiological characters of three dwarf ornamental bamboo species[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2408-2414.
[10] 庄明浩,李迎春,郭子武,等. 美丽箬竹对模拟大气 O3 浓度倍增胁迫的生理响应[J]. 植物资源与环境学报, 2012, 21(2): 68-72. Doi: 10.3969/j.issn.1674-7895.2012.02.010.
ZHUANG M H, LI Y C, GUO Z W, et al. Physiological response of Indocalamus decorus to simulated atmospheric ozone stress with multiply-increasing concentrations[J]. Journal of Plant Resources and Environment, 2012, 21(2): 68-72.
[11] 胡俊靖,陈双林,郭子武,等. 间隔子长度对美丽箬竹克隆分株水分生理整合效应的影响[J]. 西北植物学报, 2015, 35(12): 2532-2541. DOI: 10.7607/j.issn.1000-4025.2015.12.2532.
HU J Q, CHEN S L, GUO Z W, et al. Effects of spacer length on water physiological integration of Indocalamus decorus ramets under heterogeneous water supply[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2532-2541.
[12] 高贵宾,潘雁红,吴志庄,等. 美丽箬竹盆栽苗地下茎侧芽萌发特征研究[J]. 植物科学学报, 2016, 34(3): 460-468. DOI: 10.11913/PSJ.2095-0837.2016.30460.
GAO G B, PAN Y H, WU Z Z, et al. Lateral bud germination characteristics of bamboo rhizomes of Indocalamus decorus Q.H.Dai pot seedlings[J]. Plant Science Journal, 2016, 34(3): 460-468.
[13] WALTER A, SCHURR U. Dynamics of leaf and root growth: endogenous control versus environmental impact[J].Annuals of Botany, 2005, 95(6): 891-900. DOI: 10.1093/aob/mci103.
[14] JUNG V, VIOLLE C, MONDY C, et al. Intraspecific variability and trait-based community assembly[J].Journal of Ecology, 2010, 98(5): 1134-1140. DOI: 10.1111/j.1365-2745.2010.01687.x.
[15] 施建敏,叶学华,陈伏生,等. 竹类植物对异质生境的适应——表型可塑性[J]. 生态学报, 2014, 34(20): 5687-5695. DOI: 10.5846 /stxb201308062036.
SHI J M, YE X H, CHEN F S, et al. Adaptation of bamboo to heterogeneous habitat: phenotypic plasticity[J]. Acta Ecologica Sinica, 2014, 34(20): 5687-5695.
[16] KERKHOFF A J, ENQUIST B J. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities[J]. Ecology Letters, 2006, 9(4): 419-427. DOI: 10.1111/j.1461-0248.2006.00888.x.
[17] KING D A. Allocation of above-ground growth is related to light in temperate deciduous saplings[J]. Functional Ecology, 2003, 17(4): 482-488. DOI: 10.1046/j.1365-2435.2003.00759.x.
[18] COYLE D R, COLEMAN M D, AUBREY D P. Above-and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization[J].Canadian Journal of Forest Research, 2008, 38(6): 1335-1348. DOI: 10.1139/X07-231.
[19] MCCONNAUGHAY K D M,COLEMAN J S. Biomass allocation in plants: ontogeny or optimality? a test along three resource gradients[J]. Ecology, 1999, 80(8): 2581-2593. DOI: 10.1890/0012-9658(1999)080
[2581:BAIPOO]2.0.CO; 2.
[20] GEDROC J J, MCCONNAUGHAY K D M, COLEMAN J S. Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? [J]. Functional Ecology,1996, 10(1): 44-50. DOI: 10.2307/2390260.
[21] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50. DOI: 10.1111/j. 1469-8137.2011.03952.x.